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Abstract

In today’s IT-driven world, programming skills are indispensable for engineers.

While there are different approaches to teaching students how to code, it is useful

regardless to have meaningful data on student performance, for example in order

to determine early on which students could benefit from extra help. At the Thayer

School of Engineering, we have developed a platform- independent in-browser

programming environment which allows students to focus on the basics of

programming without the distractions of having to deal with complicated editors

or servers. This environment is additionally linked to students’ accounts and can

be embedded in our Learning Management System, where students must

complete daily assignments. All data of the students’ interactions with the

platform are captured, resulting in a unique data set from a full on-campus

introductory programming course. Based on this data set, we evaluated various

metrics that quantify a student’s error compilation behavior and showed that they

can be implemented in a different context and be of use as students’ performance

metrics. In addition, we found out that small programming assignments which

cover the basic concepts of programming are essential for students’ success.

Linked to these assignments, we present two metrics which show that students

who spend more time on average on these assignments, as well as solve fewer

assignments, are more likely to perform worse on the course. In combination with

the error compilation metrics, we built multiple regression models that performed

superior to individual models. Furthermore, we implemented machine learning

algorithms that could accurately predict at-risk students with up to seven days of

intervention time left before the first midterm exam. Based on our results, we can

show that a data-driven analysis in an introductory programming course can be

utilized to assist both, students that are struggling to pass the course and

educators in getting insights on student learning.
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Chapter 1

Introduction and Purpose

In the age of information technology, a basic understanding of programming be-

comes increasingly important for a broader range of persons. This student demand

of programming skills leads to an increase in the size of introductory programming

classes, which are additionally filled with students having different backgrounds,

including non-technical ones. At the same time, the difficult nature of program-

ming is unchanged, resulting in more students having problems following and

higher student dropout rates. Educators have yet to come up with better pedagogi-

cal strategies to prevent this attrition.

Novice programmers have to simultaneously master two quite disparate tasks:

They need to master the syntax of the programming language while also acquiring

the fundamental concepts of programming. There is thus a strong need to reduce

any additional barriers to learning. Depending on the working environment, they

may face additional challenges just to start coding, such as running compiler com-

mands on their source code.

There are currently a number of different approaches for trying to understand

how novice programmers learn to code. Through the use of an online Learning

Management System (LMS) as well as through the use of an online coding envi-
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ronment, a data-driven analysis is possible. This might allow for the detection of

students prone to dropping out so that the instructor or Teaching Assistants (TAs)

can intervene and help the students before it is too late. Being able to identify and

assist struggling students also benefits students who are not struggling, because

those can be assigned individual and more challenging problems. Therefore the

course can be of increased value for all of the students.

In order to keep providing personalized feedback to students, especially in

large introductory programming courses, researchers provided various data-driven

methods to assist instructors. These methods include enhanced error messages and

auto-grader systems and have been largely applied as well as evaluated in either

distance learning courses or laboratory environments. In contrast, the data set

used in this thesis resulted from a traditional on-campus course with lecture hall

seminars backed by an online LMS and a server-sided online coding environment.

Although the major online LMSs provide their own analytics features, such as page

views or participation in discussions, those only touch the surface of possible anal-

yses, because the data is already aggregated. The instructors are not provided with

personalized and helpful dashboards which then can be used to assist in decision

making. These general aggregations result from the fact that an LMS serves as a

platform for a diverse range of courses. Instead there is a need to present student

data in a meaningful way in order for the instructor to receive important signals

without having to grind through all the available data. Applying techniques of

Educational Data Mining (EDM) allows for the identification of relevant data fol-

lowed by a practical evaluation of the course to aggregate the data customized to

the domain of the course.

This thesis proposes a number of methods to analyze and improve an introduc-

tory programming course at the Thayer School of Engineering at Dartmouth, based

on our course setting and the data collected therein. A system of enhanced error

2
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messages and an new auto-grader approach are implemented as well as evaluated.

The currently discussed metrics, that are promising in predicting at-risk students,

are evaluated. Furthermore, time dependent attributes, within this context, are

extracted and analyzed based on whether they can be used as metrics to predict a

student’s performance.

The thesis starts with a brief definition of educational data mining in Chapter 2

and a literature review in Chapter 3 on current approaches that are trying to achieve

the outlined goals. The literature review is followed by a description in Chapter 4 of

the methods used and a detailed discussion in Chapter 5 of the later implemented

student performance metrics. After that, Chapter 6 introduces the course setting

and the coding environment. The main part of the thesis is the analysis in Chapter 7,

which includes the steps from data preparation to interpretation of the results.

Finally, the limitations of the approach are discussed in Chapter 8 and the thesis

ends with a conclusion and possible paths for future work.

3



Chapter 2

Educational Data Mining

This chapter introduces the terms data mining and Educational Data Mining (EDM)

and highlights the areas on which this thesis builds.

2.1 Data Mining

As a result of larger and faster ways to store data and through the rapid growth of

Information Technology (IT)-software in almost every possible area, from consumer

wearables to production processes in industry, the collection of data is growing

immensely. This leads to new challenges in how to handle this data, but also to

great opportunities when the right tools are applied to extract useful and valuable

information. One such tool is data mining, which is also known as Knowledge

Discovery from Data (KDD). KDD is a more appropriate term, because it is not the

individual data that are of value, but rather the information and knowledge that

can be extracted through an analysis. Therefore data mining can be described as a

process of discovering patterns and knowledge from large amounts of data. Data

is not typically sitting somewhere and waiting to be analyzed, but rather needs to

be collected, cleaned and transformed among other things, which involves several

steps and preparation [1].
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2.2 Data Mining in Education

EDM is a collection of a broad range of methods and applications that transitioned

from data mining in other areas to an educational context.

EDM evolved through the rise of online LMSs as well as the fact that Massive

Open Online Courses (MOOCs) generate huge amounts of different kinds of data.

This creates an opportunity to process and make use of the data. Because the field

of EDM is relatively young, current research spans many different questions and

areas. The definition by the International Educational Data Mining Society provides

the most recent explanation of the objectives:

"Educational Data Mining is an emerging discipline, concerned with

developing methods for exploring the unique and increasingly large-

scale data that come from educational settings, and using those methods

to better understand students, and the settings which they learn in." [2]

Additionally [3] categorizes research in EDM in Prediction, Clustering, Relation-

ship Mining, Distillation of data for human judgment and Discovery with models. This

thesis can be classified as EDM work in prediction as it applies methods in an effort

to predict students’ course achievements based on a single explanatory variable or

a combination of those. At the same time, available attributes from the data set are

studied as to whether they can serve as reliable predictors in the given context, too.

5



Chapter 3

Literature Review

This chapter illustrates the different directions and approaches in EDM research

and outlines the immense number of possibilities to make use of the data gen-

erated. Starting with an overview of general approaches that are possible in an

EDM-context, this literature review focuses on studies that explore data sets from

introductory programming courses. The studies develop metrics to measure stu-

dent performance and ultimately allow the recognition of students that are prone

to drop out of a course.

Since EDM is a relatively young research area, most relevant publications are

from within the last decade. [4] provides a comprehensive review of important

work published through 2009. It also reports an exponential growth of relevant

publications since 2000 based on number of citations. According to [3], most work

between 1995 and 2005 involved relationship mining with a share of 43%, followed

by prediction and exploratory data analysis and clustering. The fields focus shifted

as stated by [3] to prediction with a share of 42%, based on the publications from

2008 to 2009. The shift was followed by a new method called discovery with models

as well as exploratory data analysis and clustering.
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Looking only at EDM literature that focuses on the domain teaching and learn-

ing of programming, [5] contains an extensive literature review analyzing relevant

work between 2005 and 2015. In this special domain a rise in relevant EDM work

was discovered as well, especially when looking at the number of papers published

through the International Conference on Educational Data Mining. This number of

publications rose from 17 papers in 2008 to 91 in 2015. The reviewed literature in

[5] is categorized into work on:

• Students,

• programming and

• learning environments.

Student-focused research aims to predict student’s performance, study student

affective states - such as programming related confusion and frustration - and

estimate student knowledge. Programming focused research aims to identify pro-

gramming behavior, strategies and errors made. Lastly, studies on learning envi-

ronments aim to find tools for instructors and different mechanisms for automated

testing, grading, and feedback of programming assignments.

This thesis includes work on predicting student performance, an analysis of the

errors encountered and the benefits of having that information, as well as work

on automated testing and feedback for students when solving small programming

assignments. The following sections focus on the literature describing compiler

error messages and predicting student performance.

3.1 Improving Compiler Error Messages

A compiler translates source code from a high-level programming language, such

as C, in a format that can be executed by a computer. If the syntax of the source

7
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codes is incorrect then the compiler cannot translate it. To support programmers

in finding and correcting the syntax, compilers provide error messages that try to

pinpoint the location of the mistake. These are called compiler error messages.

There are multiple possible reasons of why introductory programming courses

are struggling with high drop out rates. One problem that has gained attention

in the past is that of improper compiler error messages. In addition to learning

the fundamentals of programming, novice programmers also have to master the

specific syntax of the programming language they are learning. If students get

additionally confused by cryptic compiler error messages while being in the process

of producing a syntactically correct program, it can lead to student frustration.

Besides raising frustration and potentially lowering retention, these compiler

messages force novice students to waste a significant amount of time to correct

simple syntax errors or require the help of instructors [6].

Compiler error messages aim to help the user correct the syntax, therefore it is

indeed important for novice programmers to learn how to utilize them. However,

the error messages are written by compiler developers and can mislead even ad-

vanced programmers, too. Moreover, error messages often fail to narrow down the

root cause of the failed compile attempt, making the debugging process even more

difficult. While Integrated Development Environments (IDEs) have gained a lot of

attention in order to assist programming, compiler error messages have not [7].

However, the customizability of IDEs and online coding environments allows

for the implementation of one’s own tools to help address these issues. When

trying to find explanations for compiler errors that guide a student through the

debugging process, it is important to be general enough to capture all recurrent

problems while also providing enough details to help a student in that moment.

Incorrectly phrased explanations or those that are not general enough can lead to

increased confusion.

8
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Because it is not trivial to find a helpful explanation for an error message and not

all errors are encountered frequently, using data-driven tools to identify the most

frequent errors based on the application helps narrow the list of needed explana-

tions down to a few. By implementing a system that aggregates error occurrences,

[8] showed that the most frequent errors identified by experts were different from

the actual errors that the students encountered. Even results of studies on error

messages for the same language may differ: Although there are definitely errors

that occur in every context frequently, the overall distribution depends heavily on

the context - the assignments the students are working on and their programming

experience. With currently available software and hardware, it is easy to aggregate

error data from ones own environment and make use of it.

The work in [9] goes a step beyond a generalized explanation and includes pre-

possessing of the student’s code to further improve the enhanced error message by

customizing it using part of the student’s source code. The system was furthermore

evaluated using a control group showing a significant reduction in both number of

errors and number of unique errors coupled with students that were less frustrated

by compiler errors in the test group.

While enhanced compiler messages can directly assist students, [10] reported

that it also enables instructors and TAs to spend more time on helping students

with more difficult problems, instead of having to spend most of their time helping

correct common syntax errors.

Going one step further, [11] implemented a system called HelpMeOut that stores

errors and their fixes from other students in the course and presents those to stu-

dents as a hint when they encounter an error that is in the database. Additionally

that system also displays further information in the form of text to help correct that

error. While [11] implemented that system in a Java environment, a separate study

was mentioned which used the system in a C/C++ context. The study also showed

9
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that, especially for errors encountered in the C programming language, the root

cause of the compiler error is often hard to map to the displayed error message,

making it impossible to provide appropriate assistance for some errors to the stu-

dent, where the HelpMeOut system would be more effective, showing the parts of

the source code that caused the error and the corresponding fix that corrected the

error.

3.2 Predicting Student Performance

While there is work in predicting students’ academic performance based on their

admission data as in [12], this thesis work is focused on student performance in

introductory programming classes. As a result of the growing popularity of LMSs,

researchers shifted their focus towards LMS data and applying EDM-techniques

to help course instructors in identifying at-risk students by providing relevant

information mined from student platform usage data. [13]

Researchers aim to find hidden attributes in student data which can be used as

predictors of their overall performance. This involves work that does not focus on

LMS data, but rather uses features and attributes from demographic data - such

as age, gender, educational background and many more. These data are not neces-

sarily easily accessible but are useful for that task. [14] as well as [15] concluded

that time dependent variables extracted from online LMSs are critical factors for

online learning which allowed them to build models that could accurately predict

students at-risk. Additionally [15] presented an early warning system that was

integrated into the LMS and is executed at certain points to take further action after

the identification.

In addition to demographic data, [16] used attributes of student’s performance

at specific check points to predict students that were at-risk before the halfway

10
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point of the course. They compared the performance of different models using

various attributes and the model using all available data performed better than that

which used only demographic data.

Aside from using demographic data or LMS data, many studies use data which

is directly related to the course material. There is a huge opportunity to gain

insight into how students learn, if the platform they are interacting with to solve an

assignment is generating fine-grained data of the interaction between the student

and the problem.

This data enables the implementation of Intelligent Tutoring Systems (ITSs), that

can guide a student through the learning process and give personalized feedback.

[17] describes the framework of such systems, specifying an inner loop and

an outer loop: The inner loop assists a student on a given problem for instance

with hints [18], whereas the outer loop provides the student with an appropriate

assignment based on an estimator of their knowledge.

For programming courses, it is possible to build an environment, capable of cap-

turing student interactions. Although there are differences in how such platforms

have been integrated as outlined in Section 6.3, many studies followed the same

goals by evaluating similar types of data. The resulting data that is gathered from

online protocols is then analyzed to find which data or metric can be used as an

indicator on whether a student is performing poorly.

Jadud analyzed the error compilation behavior [19] and proposed a metric called

Error Quotient (EQ) that shows big differences in accuracy when applied across a

wide range of different studies [20], [21], [22]. Despite the results being sensitive

to specific context, the metric seems to have promising potential; therefore stud-

ies have evaluated it in their specific context. [23] introduced the Watwin Score to

address the weaknesses of the EQ. The Watwin Score is also based on the error

compilation behavior and shows an improvement of the predictive power. In [24],

11
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the authors present a modified version of the Watwin Score by fine-tuning the pa-

rameters on a different data set. While the EQ has mostly been evaluated in Java

programming courses, [25] compares it across different contexts, notably with data

from Python- and C-courses. Lastly, [26] proposed a method called Repeated Error

Density (RED) which evaluates a student’s error compilation process with a more

generic approach, in an attempt to reduce the context sensitivity. Although none of

these metrics present a one-fits-all solution, [27] showed that data-driven metrics

derived from a student’s course participation are in general more accurate than

traditional metrics, opening a promising new field. The error compilation metrics

are discussed in more detail in Chapter 5.

Parallel to the efforts focused on creating student metrics that directly correlate

with student performance, machine learning methods have become increasingly

popular in building models that predict students at-risk using traditional variables

such as demographic data [16], but also trying to build models on top of the gener-

ated metrics. [28] compared the performance of the EQ and the Watwin Score to a

machine learning model that used features such as the average grade of the student

based on their past courses, their major, but also the number of steps needed to

solve specific programming assignments. The feature extraction process used in

this study also revealed that information on age, gender, and past programming ex-

perience did not contribute to their model. Using the relevant features, the trained

classifier was able to predict low-performing and high-performing students after

the first week of programming with over 70% accuracy when evaluated on a sep-

arate data set. When evaluating the EQ and the Watwin Score on their data set,

they found little to no correlation between both metrics and the final grade. It is

also notable that the authors provided an in-depth description of their assignments,

which had been flagged as important features. This information can be used to

compose similar assignments and try to replicate some of the results in this paper.

12
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One of the more recent works tried to replicate the above results in a different

context, using data from different universities and different courses and showing

at the same time that their neural network was superior to other algorithms [29].

The authors managed to largely replicate the results from [28] and showed again

the high accuracy of the machine learning classifiers and their overall stability over

several data sets compared to the performance metrics.

A different approach is to apply machine learning methods to a keystroke anal-

ysis. [30] tried to separate experienced programmers from novice programmers

based on their typing patterns, while also trying to map the keystroke latency of

relevant combinations - for example i and + were extracted as relevant - to the

student’s exam performance.

Lastly, recent work using machine learning techniques to predict at-risk stu-

dents compares different classifiers on two contrasting data sets [31]. One data set

resulted from an online introductory programming course, while the other was

from an on-campus course from the same university. Although the results seem

very promising, the authors used features such as civil status and income along-

side their performance on weekly activities and exams. Demographic data, besides

being difficult to gather, also add unnecessary variance to the models because they

vary not only between classes but also between universities. Moreover, using de-

mographic features increases the difficulty to extract relevant features that could

provide insights on how students learn to program.

It is apparent from this variety of contexts that the resulting data sets from

almost every study in this domain are notably different. This leads to a need to

replicate the studies and verify the results on external data sets. Hence, [5] tries to

address these issues and proposes methods in how to collect data, build the study

and present the results in order to perform the needed replication and reproduction

studies. Details on this procedure are presented in the description of the context

for the course setting of our study in Chapter 6.
13



Chapter 4

Methodology

Before starting with the analysis, the methods used are outlined in this chapter and

the underlying basic concepts are explained. Since one major part of this thesis is

to predict students’ performances and classify at-risk students, the EDM methods

for prediction and classification - mainly linear regression and logistic regression

- are introduced. This chapter starts with a brief introduction to machine learning

and the techniques applied in this thesis.

4.1 Machine Learning

Machine Learning is the process of using algorithms for recognizing and learning

from patterns in data and applying these findings to new data to make predictions.

Machine Learning is a form of artificial intelligence. Instead of explaining the

structure of the patterns to a computer, the algorithms find the patterns on their

own. Facial recognition, which is a trivial task for a human, was only made possible

for computers through machine learning [32].

Machine Learning can mainly be separated into the two categories supervised

learning and unsupervised learning. Supervised learning consists of machine learning

algorithms that learn from a sample data set - training data - that consists of input
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data - features - and the desired output - labels - in order to make predictions or

classifications for new data. While the goal of a classification task is to predict a

binary response, for example, the detection of fraudulent activities in credit card

transactions, a prediction or regression task has a continuous outcome, such as the

income of a student after graduation. Unsupervised learning on the other hand is a

collection of clustering algorithms. The input data is not labeled with a class since

the labels are not known in advance. An example of this is the segmentation of

customers into groups with similar preferences.

This thesis applies supervised machine learning methods to predict students

at-risk of dropping out of an introductory programming course. The analysis is

done in Python 3.6 and uses the scikit-learn library [33]. scikit-learn is an open source

project and widely used in science and industry for implementing machine learning

methods in Python.

4.1.1 Fitting a Machine Learning Model

For supervised learning, a data set consists of a matrix of predictors X and a vector

of the corresponding response y. The different algorithms then need to be tuned to

the specific data set by adjusting their parameters. A problem that can arise within

this process is that of overfitting. The performance of an overfitted model on the

training data is good, but when the model is tested on unseen data the performance

is bad because the model is too closely adjusted to the training data. An example of

an overfitted model is when there is a linear relationship between two variables, but

a higher order polynomial function is used instead of a regression line to describe

the relationship.

There are different steps to prevent overfitting a model. A first step is to split the

data into a training set and a testing set. The classifier is trained on data from the

training set and then evaluated on the testing set, where the testing set contains data
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the classifier has not seen before. Another step to prevent overfitting is reducing

the number of features in the model to a minimum - a process called feature selection.

Once the features are selected and the model is trained, it has to be evaluated.

4.1.2 Feature Selection

The more features are used to build a model, the more complex the model becomes

and higher the risk of overfitting gets. This is why selecting the relevant features

is a necessary step for the training of a machine learning model. Features can

be manually selected by ranking features via their individual correlation with the

response variable, which selects features independently of the algorithm used to

build the model. Apart from this, some algorithms rank features internally by

assigning an importance measurement. This can be utilized in a first iteration as a

feature selection method.

Another approach is to select features through multiple iterations. One method

is called Recursive Feature Elimination (RFE) and was used in this thesis for feature

selection. The implementation in scikit-learn is based on the algorithm proposed

in [34]. The RFE builds a model based on a selected classifier in one iteration

and eliminates the least important feature to build another, reduced model in the

following iteration. This loop is executed continuously until the reduced model

contains the desired number of features.

4.1.3 Imbalanced Data

When a model is trained on a data set where one class is underrepresented, the clas-

sifier can become less effective, although its prediction accuracy is very good. Given

a data set of 90 samples of class 1 and 10 samples of class 0, a classifier can then

choose to always predict class 1, resulting in an accuracy of 90%. This is an extreme
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scenario, but the effects of imbalanced data still need to be addressed. Various meth-

ods can be applied, such as under-sampling and over-sampling. Under-sampling

means removing samples of the over-represented class, which is only feasible when

there is enough data. Over-sampling instead focuses on adding new data to the

data set, either by replicating existing data or by synthesizing new data.

In data sets from introductory programming courses, students at-risk are for-

tunately underrepresented. Because the data set is limited, over-sampling is the

method of choice. Two techniques of over-sampling have been applied in this

thesis. The first technique is the so-called Synthetic Minority Over-sampling Tech-

nique (SMOTE) and synthesizes new data points that are close to k nearest neigh-

bors of the minority class, with k being a starting parameter. The method pre-

vents the algorithms from ignoring the minority class and allowing it to generalize

better. [35] A Python package, supplementary to the scikit-learn package, called

imbalanced-learn [36] is used to implement SMOTE in this work.

The second technique is an implementation in scikit-learn and allows the adjust-

ment of a class_weight parameter that increases the importance of the desired

class and penalizes the model when it misclassifies data belonging to that class.

4.1.4 Model Evaluation

Splitting a data set into a training and testing set is an initial step toward the preven-

tion of overfitting and allows for a more accurate representation of the actual model

performance. In unfavorable conditions, splitting the data can lead to states where

only one class is represented in a subset. On the other hand, randomly splitting the

data can also result in a scenario, where the model is overperforming on the testing

set.

To prevent such issues, a better approach to evaluating the performance of

a model is called cross-validation. The most popular version of cross-validation is
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called k-fold-cross-validation, where k defines the number of similarly sized partitions

- folds - of the data set. Common values for k are 5 or 10 folds. Once the data set

is split into k folds, the model is trained on the union of k − 1 folds and tested on

the remaining fold. This process is repeated until every fold is used as the testing

set, which results in k performance measurements that can be averaged. The main

benefit of cross-validation is that the model is forced to be more generalize since it

is tested on different slices of the data.

While there are various metrics to evaluate a classification model, the following

metrics are used in the analysis of this thesis.

Confusion Matrix

A confusion matrix visualizes the performance of a model by displaying the pre-

dictions as well as the true values per class. An example of a confusion matrix for

a binary classification problem is given in Fig. 4.1.

Figure 4.1: Confusion matrix.

Predicted

Fail Pass

Actual
Fail 4 10

Pass 0 86

This is an example of an imbalanced data set that consists of 86 actual Positives (P)

and 14 actual Negatives (N). The diagonal shows the correct predictions, 4 True

Negatives (TN) and 86 True Positives (TP). Together with the incorrect predictions,

10 False Positives (FP) and 0 False Negatives (FN), different metrics can be used to

extract the characteristics of the classifier.
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Accuracy

A model’s accuracy is the number of correct predictions divided by the total number

of samples. It is calculated by:

ρ0 =
(TP + TN)

P +N
. (4.1)

In the above example, the classifier scores a 90% accuracy by favoring the domi-

nant class. Given an imbalanced data set, the accuracy is not useful to evaluate a

classifier.

Cohen’s Kappa

Cohen’s Kappa - or the kappa score - compares the observed accuracy ρ0 with the

expected accuracy ρe. It measures how well the predictions agree with the ground

truth, which incorporates imbalanced data sets. A classifier that only predicts the

dominant class and scores a high accuracy, gets therefore penalized by the kappa

score. The kappa score is calculated by:

κ =
ρ0 − ρe
1− ρe

. (4.2)

The expected accuracy is calculated by:

ρe =
(TN + FN)

P +N
· (TN + FP )

P +N
+

(FP + TP )

P +N
· (FN + TP )

P +N
. (4.3)

The value range of κ is between -1 and +1, with κ < 0 indicating that the classifier

less effective than by chance and 0.8 ≤ κ ≤ 1 indicating almost perfect agreement.

For the above example, the kappa score is k = 0.41, with the observed accuracy

ρ0 = 0.9 and an expected accuracy of ρ0 = 0.83. The kappa score of k = 0.41

indicates only a moderate agreement.
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Precision

Precision is the ability of the classifier not to label a negative class as positive and

is calculated by:

precision =
TP

(TP + FP )
. (4.4)

For the above example, the precision score of the classifier is 0.896.

Recall

Recall, also referred to as sensitivity or true positive rate, is the ability to correctly

classify all positive samples and is calculated by:

recall =
TP

(TP + FN)
. (4.5)

Because there are no false negatives in the above example, the classifier has a perfect

recall score of 1.0.

Specificity

Specificity, also referred to as the true negative rate, is the ability to correctly classify

all negative samples and is calculated by:

specificity =
TN

(TN + FP )
. (4.6)

In the above example, the classifier has a specificity score of 0.286. This indicates

that the classifier has trouble to correctly classify negative samples.

20



Alisan Öztürk 4.1. Machine Learning

F1-Score

The F1-score is the harmonic mean of precision and recall and is calculated by:

F1 = 2 · (precision · recall)
(precision + recall)

. (4.7)

In the above example, the F1-score of the classifier is 0.945, resulting from a high

precision score and a perfect recall score.

All these metrics can also be calculated for each class label individually. In

this thesis, students will either be classified as Fail or Pass, where Pass means that

they passed the exam or the course. At-risk students are those who are classified

as Fail. For a high-performing classifier, it is desirable to at least classify all at-

risk students correctly. It would be acceptable to some degree to falsely flag some

passing students as at-risk. It is then the instructor’s choice to evaluate the flagged

students. Therefore, a suitable classifier should have a high specificity.

Receiver Operating Characteristic

The Receiver Operating Characteristic (ROC) is a popular metric to evaluate a

classifier. It is a curve that is created by plotting different values for the false positive

rate against the true positive rate. The true positive rate is given in Eq. (4.5) and

the false positive rate is equal to 1− specificity. The different values are generated

by using different thresholds for the classification. A threshold is the probability

cut-off for the classification of a true prediction. The ROC visualizes how much

better a model performs in comparison to a random classifier.

The ROC-characteristic can also be quantified by a metric called Area Under

Curve (AUC) score. It has a value range between 0 and 1, where an AUC > 0.5

indicates a model that performs better than a random model. The AUC is insensi-

tive to imbalanced data and therefore more useful as the accuracy score in this case.
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Fig. 4.2 shows several ROC curves, ranging from a perfect classifier to a classifier

that performs just as good as a random classifier:
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Figure 4.2: ROC curves.

4.2 Linear Regression

While there are many different regression models that can be used for prediction,

linear regression was implemented in this thesis. Regression models are used

to detect correlation between variables based on historic data, in order to obtain

a function that can predict the value of a variable based on the input of one or

multiple variables. The variable to be predicted is usually called outcome or response

and is denoted as y, while the variables used to make the prediction are called

predictors or explanatory variables and are denoted as x. The regression model is

called simple regression if only one explanatory variable is used and is called multiple

regression if there is more than one explanatory variable.

The simplest form of regression is linear regression, where the assumption is
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made that the relationship between the explanatory variables and the response is

linear. The model used in linear regression is a linear combination of the explana-

tory variables as seen in [37]:

y = β0 + β1x1 + β2x2 + ...+ βkxk + ε. (4.8)

In the above equation β0 is called the intercept and β1 to βk are the slopes of the linear

relationship between the individual predictor variables and the response variable.

Because the function of the regression hyperplane only estimates the data points

and the real observations do not fall directly on that hyperplane, there is an error

term ε which takes the random variance into account. For a single sample i out

of n samples, the difference between the estimate ŷi and the true value yi is called

residual εi, also known as an error term. For multiple regression models it is more

convenient to use the matrix notation:

y = Xβ + ε. (4.9)

For a simple linear regression model of the form y = β0 + β1x+ ε, a regression

model can be visualized as displayed in Fig. 4.3.
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Figure 4.3: A simple linear regression model.
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Here, a residual εi can be calculated by:

εi = yi − (β1xi + β0). (4.10)

Since the parameters in β are unknown, they have to be estimated. The simplest

and most common method for the estimation is called Ordinary Least Squares (OLS)

regression. The OLS regression minimizes the sum of the squared residuals. The

OLS criterion is, therefore:

S(β) =
n∑

i=1

ε2i = εTε = (y −Xβ)T (y −Xβ). (4.11)

Here, εT is the transpose of ε. Finding the arg min of S(β) gives the least-squares

estimators in β̂ and the function ŷ = Xβ̂ yields a point estimate of y.

4.2.1 Model Evaluation

One way to evaluate a regression model is to analyze the variance of the model.

The R2 value is called the coefficient of determination and indicates the percentage of

variance in y that can be explained by the explanatory variablesX . R2 is calculated

by:

R2 = 1− SSE

SST

. (4.12)

Here, SSE is the sum of the squared residuals and SST is the total sum of squares of

the deviations from the mean. In Fig. 4.3 a deviation from the mean is the absolute

distance of a point (xi, yi) to the horizontal line at ȳ. SST is calculated by:

SST = yTy − (
∑n

i=1 yi)
2

n
. (4.13)
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Since 0 ≤ SSE ≤ SST we see that 0 ≤ R2 ≤ 1. When adding additional explanatory

variables to the model, R2 will never decrease. If there is a correlation between

the new variables and the response, or by random chance, R2 will increase and

falsely indicate a better model fit. As a consequence, it is advised to use the adjusted

R2 - which is calculated by Eq. (4.14) - as a metric for multiple regression models

instead, because R2
adj will only increase with an additional variable when this vari-

able reduces the residual mean squared. In other words, R2
adj will only increase

when more information is added to the model:

R2
adj = 1− SSE/(n− p)

SST/(n− 1)
. (4.14)

Here p is the number of the predictors and n is the sample size. It is evident that

SST/(n − 1) is constant and not affected by how many explanatory variables are

in the model, and so R2
adj will decrease when added variables do not reduce the

residual mean square. This is helpful against overfitting the model because R2
adj

will penalize unhelpful variables.

Equally important to deciding of whether or not the regression model is signif-

icant is hypothesis testing [37]. For a simple regression model, this means testing

the null hypothesis H0 that the slope β1 is equal to zero against the alternative

hypothesis H1 that the slope is not equal to zero. Failing to reject H0 means that

there is no linear relationship between x and y. For multiple regression H0 means

that every β equals zero. Rejecting it implies that at least one explanatory variable

contributes significantly to the model. Testing the individual regression coefficients

shows which variables contribute significantly to the model and which variables

do not and therefore should be excluded. The test statistic for a random estimator
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βj which is necessary for a t-test is:

t0 =
β̂j√
σ̂2Cjj

=
β̂j

se(β̂j)
. (4.15)

Here, σ̂2 is an unbiased estimator of σ2 and Cjj is the diagonal element of (X ′X)−1

corresponding to β̂j . These can be used to calculate se(β̂j), which is the standard

error of the estimator βj .

The null hypothesis is rejected if |t0| > ta/2,n−k−1 indicating, that there is a sig-

nificant linear relationship between the predictor and the response.

Besides R2
adj , a popular metric which is mainly used to compare models to each

other is called the Akaike’s Information Criterion (AIC). It is calculated as:

AIC = n · log

(
SSE

n

)
+ 2k. (4.16)

Here k is the number of parameters in the model - including the intercept. The

lower the AIC the better. It is reduced by a smaller SSE and penalizes additional

parameters.

4.3 Logistic Regression

Whereas there are many different available classifiers for a classification task and

other studies focused on comparing these to each other, this thesis argues that

the choice of the best classifier is highly dependent on the data, even within the

same domain. Hence, it is more important to focus on the features selected by the

classifier, instead of comparing different classifier performances to each other. In

this thesis, logistic regression proved to be the most useful for this data set, hence,

this section is limited to a brief introduction to logistic regression.

Although the name logistic regression can lead to the assumption that it is an-
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other regression model, it is instead used for the classification of a binary response

variable. The reason it is called logistic regression is, that a linear model is fit in the

feature space. The result is the probability of belonging to the positive class and

the classification is made based on a probability threshold. The probability that a

set of featuresXi from a sample i belongs to the class y is:

P (y = 1|Xi) = σ(XT
i ·w + c). (4.17)

The linear term is given by XT
i · w + c, with w representing the weights of the

parameters, equivalent to the β terms in linear regression, and c representing the

bias, equivalent to the intercept. σ is the logistics function, which is a sigmoid (s-

shaped) function. It transforms values between −∞ and∞ to values between 0

and 1, the value range of probabilities. The logistics function is:

σ(x) =
1

1 + e−x
. (4.18)

An example logistic regression model that was built with only one explanatory

variable x1 and the scalar parameters c = −0.14 and w1 = 1.57 is displayed in

Fig. 4.4.
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Figure 4.4: Example logistic regression model.
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The probability that a sample with the value x1 = 0.12 belongs to the class y can

then be calculated by σ(−0.14 + 1.57 · 0.12) = 0.85.

Because there is no closed solution to obtain the parameters w and c, an ap-

proximation for the estimators can be obtained by maximizing the log-likelihood

function or minimizing the negative log-likelihood function. The likelihood func-

tion for the logistics function is:

L(w, c) =
n∏

i=1

P (y = 1|Xi;w, c) =
n∏

i=1

1

1 + e−yi(X
T
i w+c)

. (4.19)

The objective function for the optimization is:

min
w,c

n∑
i=1

log
(

1 + e−yi(X
T
i w+c)

)
. (4.20)

It is usually solved by Newton’s method or by a gradient descent algorithm.

4.3.1 Regularization

In scikit-learn the logistic regression model is implemented by additionally includ-

ing regularization parameters. It is a method to prevent overfitting and improve

model generalization. The regularization strength is controlled by the parameter

C, with lower values corresponding to more regularization and higher values cor-

responding to less regularization

The most common forms of regularization are L1 regularization and L2 regular-

ization, both of which penalize the weight coefficients by adding a regularization

term to the loss function, favouring smaller weights. L1 regularization adds the

term ||w||1 - the sum of the absolute values of the weights - to the loss function. It

can be utilized as a form of feature selection because less useful features will be

assigned a weight of zero, while others will be assigned relative large values.

L2 regularization adds the term 1
2
wTw - adding the sum of the squared values - to
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the loss function.

The main difference is that with L2 regularization, assigning weights of 0 does

not give an advantage, but they can be close to zero. This means all features will be

kept in the model. Furthermore, L1 regularization leads to a sparse output which

is not differentiable. This increases the difficulty to solve the optimization problem.

Because feature selection is performed automatically, using the RFE algorithm,

the logistic regression model built in this thesis is including L2 regularization. Thus,

the final objective function is:

min
w,c

1

2
wTw + C

n∑
i=1

log
(

1 + e−yi(X
T
i w+c)

)
. (4.21)
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Chapter 5

Student Performance Metrics

This chapter describes the three metrics of student performance that quantify the

error compilation behavior of a student. The chapter begins with the Error Quotient

(EQ) followed by the Robust Relative (RR) and the Repeated Error Density (RED).

Finally, additional information about the implementation within the analysis is

given.

5.1 Error Quotient

To date, the are no metrics that have been agreed upon, that are able to categorize, or

at least describe, the performance of novice programmers. One metric that gained

a lot of attention is the EQ, first published in [19]. It is an effort to try and map

students’ performance in an introductory programming course in Java to an error

compilation behavior. The error compilation behavior is the way students edit

and compile their source code to produce a syntactically correct program. The EQ

assigns the student’s error compilation behavior a value between 0 and 1. Having

an EQ of 1 means every compilation event resulted in the same error, while having

an EQ of 0 means the student has never encountered at least two sequential error

events.
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5.1.1 Algorithm

The algorithm to calculate the EQ needs a session of compilation events e1 to en as

input. In [19] a session included all compilations where neighbouring compilations

were no more than ten minutes apart. Afterwards, steps one to four are executed

for every session:

1. Collate - Create consecutive pairs from (e1, e2), (e2, e3) to (en−1, en).

2. Calculate - Score each pair using a scoring algorithm.

3. Normalize - Divide the score of each pair by the maximum possible score.

4. Average - Take the average of the scores to get the EQ for that session.

The main step of the algorithm is to score each individual pair. To do so, Jadud [19]

proposed the scoring algorithm shown in Fig. 5.1.

Figure 5.1: EQ scoring algorithm from [19, p. 116].

Jadud tuned the scoring algorithm based on a parameter analysis. If only one of

the compilations results in an error, the score of that pair is 0. Otherwise the score

increases when the two errors are the same, the errors occur in the same line (Jadud

allowed this condition to be true for +/- 1 line) and when the edit location of the
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two submissions is the same. In order to calculate the EQ, the coding environment

needs to capture the student’s snapshot data, which includes the source code as

well as the compiler output that includes the detailed error message and location.

5.1.2 Verification

Having an EQ close to 1 can either mean that a student is having difficulty in writing

syntactically correct programs or that the student has difficulty in understanding

the error message in order to properly address the problem. Indeed, Jadud found

a negative correlation between the EQ and the student’s final exam grade. When

correlating the EQ of a whole academic year - calculated from 24,852 compilation

pairs - to the final exam grades he achieved an R2
adj = 0.267 in his data set. When

using only data from one term, consisting of 3,462 compilation pairs, the model

only reached a R2
adj = 0.028, indicating no correlation. One possible explanation in

this context is that there is not sufficient data for that time span.

In an effort to verify the meaningfulness of the EQ, [38] conducted a study in a

laboratory environment with 143 students. The students coded in a Java IDE called

BlueJ which captured the necessary data. In total the students generated 28,386 com-

pilation events over nine weeks. As there is a relatively strong correlation between

a student’s midterm exam performance and their final performance, [38] correlated

the EQ to the midterm performance. The authors showed that calculating the EQ

in a more specified context - the lab assignments - yields better results.

In [22], significant differences in the EQs between high-performing, average

and at-risk students was revealed. A simple linear regression model was built to

predict the midterm score with an R2
adj = 0.297. However, the model was poorly

suited for predicting at-risk students.

Additionally, Jadud ran a study in 2015 on the BlueJ Blackbox data set [21]. This

data set grows out of the BlueJ Blackbox Data Collection project, which tries to col-
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lect data in a large scale from anonymous users from all over the world to allow

researchers to answer many different questions [39]. At the time of the study, there

were almost 78,000,000 compilations recorded in the blackbox data set. From this

data, [21] built a data by limiting the minimum number of compilations per user

to 50 and specifying the time frame to 19 weeks. This resulted into a data set that

contains 27,698 users and 10,193,432 compilations. Due to the nature of the data

set, this study was not able to link the EQ to any kind of student performance, but

instead tried to analyze the robustness of the EQ on a large data set. It showed that

the EQ values for all users still resemble a normal distribution, but the distribution

is slightly skewed to the left. Moreover, the study shows that there are differences

between the means when looking at subsets based on different countries. Most im-

portantly, it displays that the EQ is highly variable for the first compilation events.

However, a steady-state or a slowly decreasing state is reached - when the student’s

error compilation behavior improves - for larger numbers of compilation events.

This implies that a student needs to have a minimum number of compilation events

in order for the EQ to become reliable.

Interestingly, Jadud used a different scoring algorithm in that study, which he

also used previously in another study [40]. Fig. 5.2 shows the modified algorithm,

which does not take the error and edit location into account.

Figure 5.2: Modified EQ scoring algorithm from [40, p. 78].
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In thesis we implemented the version that was presented first (see Fig. 5.1), in part

because it was discussed in the literature more often.

5.2 Robust Relative Algorithm

There are not many new approaches for the development of data-driven metrics

that can be used as a predictor of student performance, instead, other work has been

trying to address the weaknesses of the EQ. Watson developed the Watwin Score in

[23], which additionally considers how long the student needs to correct an error.

The algorithm compares the error resolve time to all students who had previously

corrected this type of error and penalizes the student’s score based on whether the

student is slower or faster. While this approach performed much better in their

data set after the end of the course - R2 = 0.4249 using the Watwin algorithm and

R2 = 0.1922 using the EQ Algorithm - the course setting is also different from the

studies by Jadud. The Watson data set [23] consists of 45 students who had to solve

assignments on lab computers in 14 sessions over the duration of 18 weeks. They

generated 45,001 compilation pairings and indicated that Jadud might have created

pairings of compilation events where students worked on different files, which

would lead to false pairing events.

In [24], Watson presented an improved version of the Watwin Score and called

it the RR algorithm. Both algorithms also quantify a student’s error compilation

behavior. Therefore the steps in both algorithms also include the generation of

compilation pairs, the scoring of the pairings based on a scoring algorithm, the

normalization of each score and building the average out of all normalized scores.

The RR scoring algorithm is displayed in Fig. 5.3.
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Figure 5.3: Robust Relative scoring algorithm from [24, p. 141].

There are two main differences between the initial Watwin algorithm and the RR.

The first difference is a changed set of penalties. Instead of selecting the penal-

ties based on a best fit within a single data set, the new penalties were generated

with data from two different cohorts. The second difference is the comparison of

a student’s error resolve time to the resolve times of all students. The Watwin al-

gorithm penalizes the score based on ± standard deviation from the mean resolve

time, while the RR penalizes by using percentiles as shown in Fig. 5.3. Because

the error resolve times are compared to a group of similar errors, the grouping

method has a significant effect on the RR calculation. In this thesis, the errors

were categorized as parse errors, unbound names, incompatible types,

redeclared names and others, similar to [25].
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5.3 Repeated Error Density

The Repeated Error Density (RED) is a metric that quantifies whether a student

repeats the same error again and again, first introduced by Becker [26], since this is

not reflected in the EQ. The author’s intention was to present an alternative to the

EQ that is less context dependent.

It does so by taking a sequence S of compilations from a student and examining

it for repetition patterns of the same error. Given a sequence S, for example S = ...

xx ... xx ... , where x is the occurrence of one particular error, the algorithm looks

for strings of repeated errors si. In this case there are two strings of repeated errors

each with one repetition r.

The RED is then calculated by:

RED =
n∑

i=1

r2i
ri + 1

. (5.1)

In this equation n is the number of strings and ri + 1 is the length of a string si

containing ri repeated errors. In the example above this would lead to r1 = r2 = 1

and therefore RED = 1. Becker implemented a system of enhanced error messages

and reported a reduction of the RED and also the EQ within the intervention group

in comparison to the control group.

It is unclear how the RED is calculated for a particular student. It is assumed,

that the overall RED is the sum of all RED values for all sequences S over all error

types. The author reported a possible weakness of the RED given larger data. When

a student has more code submissions, it is likely to encounter more errors, which

could inflate the RED. It was therefore stated that the RED would only work with

small data sets. This thesis shows an implementation of the RED as outlined in this

chapter followed by a comparison to the other student performance metrics.
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5.4 Implementation

Comparing the different studies and approaches in which the EQ and the Watwin

Score have been implemented, it is evident that there is a high variability in the

outcome of the predictive capabilities of these metrics. This is due to many rea-

sons. The most important difference is the data set itself. While most studies

were conducted with data from introductory programming courses with novice

programming students, the physical environment in which they coded and also

the type of the coding assignments differ across the studies. Additionally, the way

the data is prepared and the methods of implementation for the algorithms are not

provided in enough detail to guarantee an identical replication. For the data clean-

ing process this involves excluding students with only a few submissions or those

who did not work on a large enough number of unique assignments. Only Jadud

mentioned that he excluded student sessions with less than seven files, without

describing how he determined this cut-off [19].

In [25], the impact of the context on the performance of the EQ is analyzed

by evaluating the metric on four different data sets that originated from different

platforms and across various programming languages. As the EQ was developed

and heavily tested on data from a Java course, in [25] it is evaluated on Python

and C data sets, showing significant differences between contexts. The work sug-

gests to instead adapt the data-driven metrics to fit the specific course setting. One

necessary step to incorporate this into an individual metrics-driven algorithm is

to find out which of the variables of the course setting, whether it is the program-

ming language, the programming platform, the context of the assignments or even

something else, affect the metric and to what degree.

In this thesis the three presented metrics, EQ, RR, and RED, were implemented

and evaluated on all possible data, but also on specific slices of the data set, measur-

ing the impact of the context on the overall model performance. Every problem the
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students worked on is called an assignment and all code snapshots of one specific

student-assignment combination are called a submission package, independent of

the time and location the student submitted the snapshots. The metrics were calcu-

lated per submission package and then averaged. Different lengths of a submission

package were evaluated and are also discussed in Chapter 7. Furthermore, it is

important to note that the students learned the C programming language. To date,

there has not been a metric tested on a data set within this context. Because of these

differences, it is expected to see different results. Therefore the analysis aims for a

transparent approach, allowing for replication of the results within similar enough

contexts.
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Chapter 6

The Course Setting and the Code

Environment

As outlined in [5], there is a need for reproducibility in order to validate findings

from different data sets and different research groups. In an effort to ameliorate

this need, a detailed description of our data set is included in this chapter. This is

followed by a brief explanation of Canvas - the LMS used with our course - and its

analytics tools, as well as a detailed description of our online coding environment

and its integration into Canvas.

6.1 Course Overview

The course is taught as an on-campus introductory C programming course and

is accompanied by the school’s online LMS. Throughout the term, students solve

various coding exercises in different contexts. This results in a unique data set, the

structure of which has to be considered in the analysis: Unlike most other studies,

our data was not gathered in a laboratory environment, but in an on-campus class

setting.
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The students must prepare for each lecture beforehand, a process that includes

watching brief video lessons and working through short quizzes that they must

submit within the LMS. Those quizzes are mandatory and account for a small

portion of the final grade. They mostly include short coding exercises and are

solved in the LMS and a graded automatically by an auto-grader system. These

quizzes are called auto-grader quizzes. Besides auto-grader quizzes, some quizzes

also have a coding window integrated, but do not include a programming task

to solve a problem. Instead they allow the student to practice the recently taught

concepts and explore them further. This type of quiz is called a try-out quiz. Apart

from the quizzes, students need to solve regular homework assignments, which

are more complex. Similar to the quizzes, the homework assignments are unlocked

at a specific time and need to be submitted before a deadline. For most of the

homework assignments that involve coding, a coding environment without any

pre-populated code is also provided.

In the past, students were connected to a server-side Linux environment in order

to execute their code. They still do this in the first few homework assignments,

and also for certain assignments, which results in some students preferring to use

that environment. In past iterations of the course, students had to submit their

source code for the homework assignments through a document upload in the LMS.

Because this is the first time the students must use the coding environment as a

main part of the course and the environment does not support managing deadlines

and grading yet, the students still need to upload their solutions manually in the

LMS.

During class, students also solve small programming exercises and can receive

direct assistance. These are called in-class assignments and the students program in

pairs most of the time. This is called Pair-Programming; it is a practice that originated

in industry and recently found its application in an educational context. Students
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work as a group of two on one computer and while one student is doing the ac-

tual coding, the other observes the process and discusses the actions taken by the

programmer. These roles are frequently swapped and several studies have proven

positive effects on learning when pair-programming is used in classrooms [41].

Because students code in pairs, however, the data assumed to only be linked to a

single student is distorted, making some of it unsuitable for parts of the analysis.

This data has to be excluded from the analysis.

In addition, students have to code a programming problem in a test setting,

similar to a lab session - so called gateway assignments.

An overview of the different types of assignments and the number of coding

assignments which were solved in the online coding environment up until the time

of the first midterm and in total is given in Table 6.1.

Table 6.1: Number of the assignments within the coding environment.

Context up to Midterm 1 Total

Quizzes (auto-grader) 8 14
Quizzes (try-out) 9 25
Homework 11 15
In-class 12 29
Gateway 1 3

Sum 41 86

The course demands a lot of effort from each student. Besides class attendance

and exams, it requires students to prepare for class beforehand and also work on

programming assignments in class. Furthermore, students work on projects, called

longer assignments. For these, students do not code in the coding environment.

Altogether, the final grade of the course is a composition of this effort and the

breakdown of the weight of each assignment type is displayed in Table 6.2.

The course has a duration of 10 weeks, with two exams during the course and a

final exam at the end of the course. The part of the course where students program
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Table 6.2: Breakdown of the final grade.

Assignment Weight

Quizzes 5%
Class Participation 5%
Homework 15%
Longer Assignments 25%
Midterm 1 15%
Midterm 2 15%
Final 20%

in C covers only seven weeks and starts after the first week of the course. This

thesis’ data set consists of the data collected from 93 students out of which five

students did not finish the course.

6.2 Canvas

Canvas is an online LMS and assists instructors with the course. It allows the in-

structor to communicate with all course participants and distribute course material

to them. It also enables the setting up of quizzes and assignments in advance,

which can be hidden until a specific date and, once unhidden, remain accessible

by the student until the submission deadline. That way, all students know what

they have to do and until what date they have to submit it, as well as the amount of

points they can earn for each individual assignment or quiz. The Canvas quizzes

consist of a problem definition and can be extended with answer fields, multiple

choice questions, or prompt students to upload their solutions in a specific format

to Canvas. In this course, the quiz and homework assignments also provide a

coding window from the online coding environment, integrating the coding assign-

ments into Canvas which is clarified later in this chapter. Quiz assignments with

automated feedback are mandatory and need to be solved to gain credit.

To assist with grading, Canvas has also integrated several tools that allow fast
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and transparent grading. To some extent, direct comments on submissions are

possible, when students submit .pdf or .docx files.

6.2.1 Canvas Analytics

Canvas has its own analytic tools that include an aggregated view of the student’s

platform activity data, separated into Page Views and Participation.

1. Page views: The number of pages a user clicked on.

2. Participation: An event created when the user submits or starts a quiz, sub-

mits an assignment, creates a wiki page, participates in discussions, joins a

web conference or loads a collaboration to view/edit a document [42].

In addition, a boxplot is given that displays the points received by all students for

each assignment. The instructor view is shown in Fig. 6.1.

Figure 6.1: Canvas Analytics - Boxplot.

Lastly a table containing page view and participation data as well as information

on whether the student submitted assignments on time are given for every student,

an example with fictional student data is displayed in Fig. 6.2.
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Figure 6.2: Canvas Analytics - Student table [42].

The category of submissions is the number of assignments that have been submitted

by the student. The following three columns indicate how many assignments a

student submitted before the deadline, after the deadline or missed submitting at

all. At last, the student’s current score is calculated by including all assignments

that have been submitted and graded. When clicking on a student - as indicated in

red - the identical plots are shown on that student - meaning the student’s activity,

communication activity, submission tree - and indicating the student’s relative

position.

While this is aggregated data, Canvas allows authorized users to make so called

Application Program Interface (API) calls to also return finer grained data. Since

API calls contain personal information, getting authorization is extremely restricted,

but is necessary. To make use of the data - to build decision support tools or for

research purposes - Canvas needs to create new API interfaces that would allow

access to anonymized data, but linkable data. Beyond that, another obstacle is

the fact that students who drop the course are removed from Canvas. This leads

to an incomplete data set that of all things lacks the data from the students of

interest. While it is possible to get aggregated data, it only provides a snapshot of

the moment of the API call. As a consequence, an analysis comparable to that of

the coding data cannot be easily executed for the Canvas data.
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6.3 The "Code" Environment

Our "code" environment is an online embedded code editor that allows immediate

compiling of source code written in either C or Python. The editor is an integration

of the Ace project [43] and is written in JavaScript. The whole environment is part

of the Thayer School’s internal IT-ecosystem and any student from the college can

access it with their regular student credentials. It was developed prior to this thesis

and was used infrequently in past courses as an assisting tool. By the time this

thesis was underway, there was already data accumulated from a past course. Part

of this thesis was the full integration of the coding environment in the course setting,

which demanded a rework of the auto-grader system and an adaptation of several

coding assignments. In addition, a system of enhanced error messages - called

friendly errors - was implemented. Fig. 6.3 shows a general view of the editor and

how the students encounter the embedded coding window within Canvas. In this

case, pre-populated source code was provided for the assignment.

Figure 6.3: Interface of the "code" environment.
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The Ace code editor provides syntax highlighting but behaves otherwise like a

normal text editor. A student can compile their code by pressing the Run button

in the lower right corner. This creates a snapshot of the code, containing a unique

Identification (ID) linked to the student, to the assignment and a time stamp. A

server based compiler - wrapped in a safe environment - is then run on the code

snapshot. This generates an output file and a compiler error file. If the compiler

error file is not empty, the error will be displayed to the student on an overlay on

the right side of the coding window. This is shown in Fig. 6.4.

Figure 6.4: Display of a compiler error.

When the compiler runs successfully, the program output - if there is any - is dis-

played. An example is shown in Fig. 6.5.
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Figure 6.5: Display of program output.

6.3.1 Integration of the Coding Environment into the LMS

Only authorized users are able to connect to the coding platform. The authorization

process with regular student credentials allows an identification of the user as well

as a reliable way for students to log into the platform without prior registration.

Because the IT-ecosystem has a running single sign-on solution, students are always

automatically logged-in on the integrated coding environments within the LMS.

This makes an additional authorization for the coding environment needless and

the experience is seamless for students.

The in-browser coding environment is embedded into quizzes and assignments

by using an Inline Frame (IFrame), which is a HTML document embedded into

another HTML document. The platform then searches for previous student code

and displays it, if it is found. This way every student has a personalized coding

window for each coding problem and can resume previous work.

Each coding window can be pre-populated by the instructor with source code

and deployed to students by using a query string in the form of?starting_point
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= <NAME>. We call such pre-populated code windows starting points. Student’s

code is saved by a unique student ID and the name of the starting point. If no start-

ing point with the given name is found, an empty coding window will be loaded.

By using pre-populated code, the instructor can prepare quizzes and provide a

skeleton which allows students to build on the code, starting from writing simple

declarations and print statements to aggregating these in a bigger context.

When preparing for the upcoming class, students are introduced to new con-

cepts by watching short video clips. Following this, students sometimes get a

pre-populated coding window to try out the just seen concepts and programming

principles to get familiar with them. Every assignment has a starting point, even if

it is does not contain pre-populated code. On the one hand, this allows the student

to return to his source code at any given time and allows to link the snapshot and

log data to a specific assignment on the other hand.

6.3.2 Data Collection

As described in [5], from an EDM point of view data can be collected in different

granularity levels, with keystrokes being the finest level. With the availability of

cheap storage and the computational power of current server systems, there is no

technical reason not to save all the data that can possibly be stored by the respective

platform. Fig. 6.6 displays the different granularity levels, by which most EDM

work concerning programming instruction can be categorized.
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Figure 6.6: Granularity levels for data collection [5, p. 8].

The "code" environment covers all granularity levels, which allows researchers to

chose the desired resolution.

The Websocket

While the code compilation workflow saves code snapshot data, an additional tool

is used to capture the keystroke data. The coding environment uses a websocket to

capture the log data. Every activity contains traceable information, the relevant

data is displayed in Table 6.3.

Table 6.3: Websocket data.

Type Example

Time stamp 2017-03-01T12:00:00.001
Browser Session 4e64637233f0899a8aa97
User Session 1d9f4934030dfc524e15d
User ID 001
Starting point starting_point1.c
Action connect / delta / run /

close / focus / blur / dis-
connect

Tracking the browser session distinguishes the actions among multiple sessions. A

single student could even code on two different devices and the data can still be

separated into two sessions afterwards. Besides that, having the student’s session

information allows another user - for example a teaching assistant - to connect to
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the student’s session, run their code, make changes and write comments in order

to assist the student.

The action events - listed in Table 6.3 - capture the type of interaction between

the platform and the student. Besides connecting and disconnecting, a delta event

captures all changes in the source code - including the location of the edit. The

focus and blur events allow to track whether the student is actively on the platform

or has it tabbed in the background.

In most studies in the field, the active time a student worked on a coding assign-

ment was calculated by using the difference of the time stamps as an estimator for

the time between to compilation events. This is not suitable in this course setting,

because students can work on these assignments whenever they wish to. Often

students were inactive for short periods of times or even paused their work and

resumed it on the next day. An analysis of the websocket data allows the removal

of inactive time and is necessary for an accurate estimation of the student’s coding

activity. The procedure is introduced later in the analysis.

6.3.3 Automated Feedback

Receiving feedback on their own code, not only on the syntax, but especially on

the semantics of the programming problem is an important factor in programming

instruction. Providing enough assistance for students gets more difficult even with

the help of TAs, when the number of course participants grows. This results in the

need of systems that can provide automatic feedback to students on syntactically

correct, but semantically incorrect programs.

Feedback like this can be generated by a so called auto-grader. The complexity

of an auto-grader varies greatly, from a simple Input/Output test to a decomposition

of the underlying structure of the source code. Complexity further depends on the

level of feedback given. An example that shows the possibilities of using a data
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driven approach is the self-improving python programming tutor presented in

[18]. The system transforms a student’s semantically incorrect source code into an

abstract structure and then finds a path from the student’s source code to a solution

while generating personalized hints for the student.

Prior to the current re-design, our coding environment already had some as-

signments with automated feedback integrated. A programming assignment with

automated feedback consisted of a starting point, either empty or pre-populated,

and a file that contained test cases and the corresponding output. This is a classical

input/output approach which is easy to implement but comes with major down-

sides. It is not unusual for programming students to print out additional variables

alongside the answer and even an unintended blank space that will break this test-

ing approach. Instead, in our current system a new approach was implemented

by directly testing the student’s results within their source code. This requires a

function call that is added right before the return statement of the main function.

The function is called check function and is part of the pre-populated starting point.

A feature of the coding environment allows parts of the source code to be hidden

at the beginning and the end. This technique is described at the end of this chapter.

The check function can require student variables as inputs, which can be already

included in case the variable is declared as part of the starting point or the source

code contains information that prompts the student to pass their declared variable

to the function. In contrast, when students are prompted to write a function with a

pre-defined name, the check function usually does not require arguments, because

it can call the student’s function directly. The check function then runs the test

cases and determines if the function operates correctly or incorrectly. This system

was implemented without changing the original platform’s workflow of correct-

ness checking. This implies that a predefined output is still needed for a positive

outcome. Hence, the check function provides a generic output for correct scenar-
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ios. A more interactive approach would demand a costly redesign of the workflow.

However, this output is not visible for the student and the server does not evaluates

the student’s output.

Using an integrated check function has several benefits but also comes with a

set of limitations. On the one hand, correctness checking through the check func-

tion solves major flaws in input/output testing. When students do not have to

write functions - mainly because they have not yet been introduced to that concept

- employing user input for further calculations allows this system to check for cor-

rectness and prevents academic dishonesty at the same time, because the values

that are piped in as user input are unknown to the student. As a simplified exam-

ple, a student can be prompted to retrieve a number from user input, calculate the

square root of it and pass the result to the check function. The student can choose

the user input when running his code and assuming that the number 4 was chosen

as user input and the student wrote a print statement to display the result, then 2

would be displayed. Invisible for the student, the server will run the code a second

time but using own predefined input. Assuming that the instructor predefined

1762, then the check function requires the passed argument to be 42 in order to be

correct. Students can only game the system if they know the predefined input or if

they are lucky by trying out all possibilities.

On the other hand, it is not possible to check a program for correctness, when

correctness checking involves testing whether students are correctly implementing

certain print statements. A work-around for that problem would involve using both

mechanisms side by side or an adjustment of the assignments to fit a check function

style. Another negative impact of the check function approach is the presence of

the function call itself. It can confuse programming novices at an early stage. To

reduce this effect, students were briefly introduced to the check function.

The quizzes in this course, - as part of the LMS - were excellently suited for the
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implementation of the auto-grader, because most quizzes had short, simple coding

exercises integrated within via an IFrame. Student participation in these quizzes

was guaranteed, as students had to solve quizzes in order to receive points that

accounted for a percentage of their final grade. When students run their code and

the auto-grader is successful, it returns a keyword that has to be submitted to finish

the quiz. This proved useful for data collection, because students are obligated to

solve the programming assignment in the coding environment in order to get the

keyword.

Direct feedback provided by the auto-grader is not only beneficial to the student,

but also helpful on the teaching side. The auto-grader assignments save time for the

instructor and TAs, translating into more time for individual assistance for students

who are in need of support.

6.3.4 Friendly Error Messages

Part of the work of this thesis was to create a workflow to implement enhanced

compiler error messages into the current structure of the coding environment. This

system was implemented before the start of the course and employed data from

past uses of "code" in order to determine the most frequent error messages students

received. This analysis is necessary because it is challenging to find a suitable

explanation for any specific error without causing more confusion. The root cause

of confusion is that C-compiler errors usually have multiple causes, demanding

an explanation that is general enough to cover these cases, but still helpful for the

student’s context. It is, therefore, advantageous to spend the available development

time only on the most frequent error messages that occur within this programming

course. Based on a data set from 84 students and a total of 11,747 submissions and

4,440 errors, the most common errors in this context were identified. The top ten

errors are listed in Table 6.4.
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Table 6.4: Most common C errors from the historic data set.

Error Occurrence

1 error: ’X’ undeclared (first use in this function) 649
2 error: conflicting types for ’X’ 309
3 error: expected expression before ’X’ token 261
4 error: ld returned 1 exit status 224
5 error: expected identifier or ’(’ before ’X’ 224
6 error: unknown type name ’X’ 194
7 error: expected expression before ’X’ 189
8 error: expected ’;’ before ’X’ 180
9 error: expected ’=’, ’,’, ’;’, ’asm’ or ’__attribute__’ before ’X’ token 177
10 error: incompatible type for argument i of ’X’ 146

The top 20 errors in fact account for 76% of total errors. Friendly error messages

were generated for the top 50 errors, covering 95% of the occurring errors. By

comparing this historic data to the current data set, we were able to show that 15

out of 20 errors from the historic data set were also in the top 20 of the current data

set. The top 20 errors from the current data set covered 77% of the total errors and

the top 50 errors covered 95%. This shows that the data-driven approach to extract

the most frequent errors proved effective, while only a fraction of the data was

available when compared to the main data set. The top ten errors are displayed in

Table 6.5 and were extracted from 68,248 submissions by 95 students.

Table 6.5: Most common C errors from the current data set.

Error Occurrence

1 error: ’X’ undeclared (first use in this function) 2903
2 error: expected expression before ’X’ token 1189
3 error: expected ’;’ before ’X’ 1108
4 error: expected identifier or ’(’ before ’X’ 860
5 error: expected ’;’ before ’X’ token 768
6 error: conflicting types for ’X’ 761
7 error: expected ’=’, ’,’, ’;’, ’asm’ or ’__attribute__’ before ’X’ 644
8 error: parameter name omitted 643
9 error: ld returned 1 exit status 618
10 error: expected ’=’, ’,’, ’;’, ’asm’ or ’__attribute__’ before ’X’ token 571

Knowing the most common errors allows the instructor to directly address these in

class and prior to more complicated assignments. The instructor can offer targeted

debugging training and gently introduce students to the compiler error messages.
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It is important that students familiarize themselves with compiler error messages

and learn to utilize these, which is why the friendly error message is displayed

along with the original compiler error. It is worth noting that the most frequent

errors can strongly vary depending on the course setting, the assignments, and

also the students. Yet gathering the compiler error messages in an online coding

environment, even without a link to a specific student code, can be set up without

much effort. This is a first step in making use of course-specific data and improving

the teaching of an ongoing course as well as the teaching of future courses.

Integration

To generate a friendly error message for a student, an additional script was inte-

grated into the workflow, which looks as follows:

1. The student compilation attempt results in an error.

2. A script is called that takes the error file as an argument.

3. The error message is standardized by replacing variable or function names

with a generic ’X’, instead of just removing it. This preserves the original

structure of the error message.

4. Based on the standardized error, a friendly error will be taken from a dictio-

nary and written to an output file.

5. The server reads that output file and displays the content right after the com-

piler error message.

This workflow was chosen, because it could easily be integrated into the current

system environment and also allows a dynamic feature handling where the course

instructor can choose to use the feature or not. Fig. 6.7 shows the resulting view

when encountering an error. The friendly error message is displayed in yellow.
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Figure 6.7: A friendly error message.

It is important to repeat the process of gathering course feedback and analyzing

subsequent data to adapt the friendly error messages at the end of the course. This

is an evolutionary process that occurs over time and is dependent on continuous

improvement. Within this process, some standardized errors will have to be disag-

gregated and be further differentiated, and in other cases similar errors that occur

frequently and result from the same mistake will be aggregated into one standard-

ized error.

With ongoing discussions occurring within the literature about the effective-

ness of enhancing compiler error messages, it is important to note that the correct

implementation is clearly the key for success.

6.3.5 Tools and Features

The coding environment already comes with a handful of features that not only

benefit students, but also assist instructors. While the auto-grader system and

the friendly error messages have already been discussed, other features are briefly

outlined in this section.
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Masked Code

The coding environment has the option to mask portions of the code from students

(mostly for the purpose of auto-grading) by using special strings within the source

file of the starting points. These special strings mark the beginning and the end

of the part that is visible to students. Everything that is above the first string or

below the second string is not visible and not editable for students at all. When the

Run button is executed, within a series of events, the full source code (including

hidden patterns) is combined, the special strings are removed and the source code

is then sent to the compiler. This allows to hide parts of the pre-populated source

code that can be confusing for novice students at an early stage. Most importantly,

this feature is essential to implement the already presented auto-grader system:

the important check function is part of the source code and would lead to more

confusion if shown to students. Besides, the check function sometimes contains

the solution and should, thus, clearly be invisible to students. The pre-populated

source code including the masked code is displayed in Fig. 6.8.

Figure 6.8: Implementation of the check function.
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The Admin Dashboard

The instructor and the TAs can access an admin dashboard for a given starting

point that displays a tile for each student who has worked on that assignment. A

sample view of the dashboard is given in Fig. 6.9.

Figure 6.9: The admin dashboard.

Each student’s tile contains a graph where the x-axis represents the time and the

y-axis represents the number of student actions. Each block represents a run event

and is colorized in red when the student encountered an error, otherwise in green.

If the assignment has an auto-grader integrated, the whole box is additionally

colorized for students who solved this assignment correctly.

With this dashboard, the instructor is able to oversee student’s coding activi-

ties which is especially beneficial for in-class coding assignments. It is possible

to click on a particular student and open up a collaborative code session within

the student’s code. The instructor can run the compiler, make edits and add com-

ments to the source code. This way, students can get immediate remote assistance.

In addition, TAs can use the dashboard to inspect and run students’ source code

while grading assignments. At the time of writing, using the dashboard for grading

purposes is only supplementary, because assignments are not submitted through

the coding environment and student code is not frozen at a deadline. Future im-

plementation of a reliable workflow, for both the students and the TAs, could ease
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the submission effort for students, reduce grading time for TAs and improve the

feedback given to students.

Code Review

Given an assignment and a student, the instructor can review every student action

in a chronological order. This allows to inspect how a student coded and can help

determine whether and if so with what a student is struggling. At the time of

writing, this feature lacks guidance for the instructor because it is difficult to decide

after one week of coding which student’s actions need to be inspected more closely

and in particularly at what assignment to look at.

This thesis presents methods to flag at-risk students that can be implemented

as a decision support tool for the instructor in order to use the inspection tools on

flagged students. Afterwards, the instructor can decide whether the flagged student

need an intervention and if so develop an intervention strategy that addresses

students’ deficits.

6.3.6 Student Survey

At the end of the course, students were asked in an anonymous survey to reflect on

their experiences with the coding environment. This survey was completed by 78%

of all students. Only 37% of these students stated that they coded in the coding

environment for the majority of the time. Given the survey results, this is partly

because of students missing features within the coding environment which would

be necessary to work on more complex and interactive problems such as the longer

assignments.

Overall, the biggest benefit the majority of students mentioned was the ease

of starting to code and the ability to test ideas quickly by compiling their code in

one click and getting immediate feedback. Students were also asked about their
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impression with the friendly error messages to receive an idea of whether these

messages affected the students in any way. Almost 70% of the students answered

that the friendly error messages were helpful.

On the other hand, students also reported some major issues they had with

the coding environment, which could have led students to avoid using the envi-

ronment. Although the majority of students reported that they liked the instant

feedback, 28% of the students reported to be confused by the check function call

within their source code. Since students had many assignments that involved

user input which had to be pre-determined before running the compiler, many

students wished for a more interactive coding environment that is not reliant on

pre-determined user input. Similarly, programming assignments that involved file-

handling were dependent on files that were stored - by the instructor - on the server.

Students could neither inspect those files nor use their own files. Lastly, students

were frustrated with the sizing of the embedded coding window, which is restricted

by the Canvas LMS. We are in the process of building a full-screen option to resolve

this issue and we are looking into ways to implement an interactive mode as well as

a different way to handle files because we believe that programming assignments

that require these features are important to cover.
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Chapter 7

Analysis

The goal of this chapter is to extract useful information from the available data set

and to build predictive models that can be used to guide the instructor in deciding

which students may be at-risk and in need of an intervention.

First, the data set is preprocessed, which includes data cleaning and data prepa-

ration. Then the metrics - discussed in Chapter 5 - are evaluated separately and

are compared to each other. This is completed via the analysis and evaluation of

time-dependent attributes and other relevant findings. Finally, these findings are

combined to build predictive models and discussed for potential applications.

7.1 Data Preprocessing

Before starting with the analysis, the data has to be cleaned. Only data generated

within the selected time frame and from course related students are of interest. Non

course related persons - TAs, instructors and external users of the platform - were

removed from the data set. Besides that, incomplete data was removed, which in-

cludes incomplete submission packages that resulted from two major server outage

events. Following the data cleaning, the students’ LMS data was joined with the

students’ coding data. The LMS data includes auditors and test students that also
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needed to be removed. Out of the 95 students that started, two dropped the course

for non course related reasons. Out of the remaining 93 students, 88 students fin-

ished the course and were graded, whereas five students withdrew from the course

to avoid a poor or failing grade. These five students, as well as students that fin-

ished the course with a grade lower than 75%, are classified as at-risk students. The

students that withdrew from the course are included in the analysis of the data up

until the first midterm exam.

Recall (Section 6.1) that some of the assignments are solved during class, where

students are programming in pairs, all in-class assignments with less than 2/3

participation were excluded from the data set. This same cut-off was also used for

the ungraded try-out assignments which led to a total removal of 46 assignments.

The information of the available data set after the first preprocessing step is listed

in Table 7.1.

Table 7.1: Content of the main data set before and after preprocessing - students
that finished the course are displayed in parenthesis.

Before After

Students 95 93 (88)
Assignments 86 40
Submissions 68,248 59,155
Errors 24,996 21,599

Instead of using sessions that are restricted by a time limit, submission packages

consist of all the work from one student on one assignment. While Jadud [19] was

the only one using a cut-off value of at least seven submission for a session to be

included in the analysis, he did not state how he determined the value. The only

other mentioning of a minimum number of submissions per session is in [5], but

they only take up on Jadud’s suggestion and wrap this in a definition that requires

seven distinct submissions with no longer than 20 minutes separation between

two submissions. Instead, this thesis argues that this definition of a session is not
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universal, due to the context. In most studies the data was generated in lab sessions

where a single student only had a single number of sessions. On the contrary, in

our data set a student worked, on average, on 33 assignments, resulting in an equal

number of submission packages which we analyzed instead of sessions.

The main objective when trying to predict struggling students is to identify

the students as early as possible in order to try some interventions. This requires

sufficient data. The total available number of submissions at the end of every week

as well as the submissions generated in the corresponding week are displayed in

Fig. 7.1.
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Figure 7.1: Student submissions over time.

When looking at Week 1, it is evident that there is not enough data available to

make any predictions. Not only do the 474 submissions account for less than 1%

of the total submissions over the duration of the course, but only 29 students have

started to code up to this time. The reason for this is that the first week of the course

does not include any coding. The available data are from students who already

started with coding assignments ahead of time.

In contrast, by the end of Week 3, already 48.53% of the total data was avail-

able. This was the most coding-intensive week - on the coding platform - for the

students, right before the midterm exam. Unfortunately, using this data to predict
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the outcome of the midterm exam would be of little help, since there is little time

left for an intervention. Lastly, it is important to separate the data based on the

context of the assignment to allow for a differentiated analysis. A breakdown of

the assignment types is given in Table 7.2, where na is the number of assignments,

nsub is the number of submissions and nerr is the number of errors.

Table 7.2: Available student data by the end of Week 3 and Week 8.

after Week 3 after Week 8
Context na nsub nerr na nsub nerr

Homework 11 17,185 4,048 15 29,778 9,050
Quizzes (AG) 7 7,237 2,845 13 11,729 4,998
Gateway 1 2,527 1,684 3 10,662 4,128
In-class 1 1,369 517 5 5,793 2,845
Quizzes (TO) 3 781 295 4 1,193 578

Total 32 29,099 9,389 40 59,155 21,600

7.2 Quantifying the Error Compilation Behavior

Before evaluating the predictive performance of the metrics described in Chapter 5,

their underlying distribution as well as their value ranges are described. After an

individual inspection, they are compared to each other and discussed in context.

7.2.1 Describing the Distributions

After implementing the algorithms and running the analysis on the preprocessed

data after week eight of the course, the distribution of the Error Quotient (EQ),

Robust Relative (RR) and Repeated Error Density (RED) is displayed in Fig. 7.2.

Because the EQ is normalized, its values are limited between 0 and 1. In this data

set, the values range from 0.05 to 0.39 with a mean value of 0.19. When testing the

EQ distribution for normality using the Shapiro-Wilks test [44], the null hypothesis
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Figure 7.2: Distribution of the EQ, RR, RED.

that the data is normally distributed could not be rejected (p = 0.241). As Jadud

reported, when testing the distribution of the EQ against the blackbox data set the

kurtosis and skewness slightly differ from those of a normal distribution [21]. In

contrary, testing whether the kurtosis and the skewness in this data set would differ

significantly from those of a normal distribution, the null hypothesis could not be

rejected (p = 0.567 using [45] and p = 0.112 using [46]). Based on this result the EQ

is approximately normally distributed.

The RR values are also normalized and in this data set their values range from

0.09 to 0.35 with a mean value of 0.205. Applying the same test for normality of

the distribution, of the kurtosis and of the skewness, the resulting p-values (p =

0.515, p = 0.642, p = 0.452) indicate that the RR is also approximately normally

distributed.

Lastly the RED’s values upper limit is not capped, but dependent on the length

of a sequence. In this data set the values range from 0.2 to 5.52 with a mean value of

2.29. The resulting p-values for the normality tests (p = 0.013, p = 0.375, p = 0.084)

indicate that the RED is not normally distributed, which might cause potential

issues and can be a reason for the different performance that was visible within the

analysis.

65



7 Analysis Alisan Öztürk

7.2.2 Individual Predictive Performance

To test the general ability of the EQ to serve as a predictor for the student’s per-

formance, the available EQ data up to the dates of the exams - the two midterms

and the final - has been plotted with the corresponding results. Fig. 7.3 shows the

results and the resulting regression curve after applying a linear model.
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Figure 7.3: Correlation of the EQ and exam performance.

There is a strong correlation between the EQ and exam performance - in all three

cases p < 0.0001. For the second model an outlier that differs extremely from the

rest of the students has been excluded - marked in grey.

Similarly to the EQ, Fig. 7.4 displays the predictive power of the RR for a stu-

dent’s exam performance.
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Figure 7.4: Correlation of the RR and exam performance.
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The resulting model indicates a correlation between the RR and the student’s exam

outcome, too (p < 0.001). However, compared to the predictive power of the EQ,

the model consisting only of the RR results in a significant lower R2.

Lastly Fig. 7.5 shows the predictive power of the RED for a student’s exam

outcome.

0 1 2 3 4 5
RED

35

40

45

50

55

60

M
id

te
rm

 1

R2=0.19

0 1 2 3 4 5
RED

25

30

35

40

45

50

55

60

M
id

te
rm

 2

R2=0.17

0 1 2 3 4 5
RED

35

40

45

50

55

60

65

70

Fi
na

l

R2=0.14

Figure 7.5: Correlation of the RED and exam performance.

Although the data in these figures is much more scattered than for the EQ and the

RR, there is still a clear relationship visible. Interestingly, the amount of variance

explained by these models - quantified by R2 - continuously drops. The reason for

that is exposed when the RED is evaluated in context of the next section.

The literature shows that when predicting students’ performance, it is not

always clear what ’performance’ actually means. While some studies used the

midterms or the final to define performance, others suggested using overall course

performance. One reason to use exam performance would be the direct effect it

has on the student. In fact, four out of the five students who dropped the course

left after they received the evaluation of the first midterm exam. Then again, stu-

dents usually care mostly about the overall course grade, which ideally should be

a reflection of the student’s learning success. For building prediction models, it

is useful to test the metrics ability to predict both, exam performance and course

performance. Fig. 7.6 shows the predictive performance of the three metrics for a

student’s overall course grade.
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Figure 7.6: Correlation of the metrics and overall course performance.

The same outlier that occurred in Fig. 7.3 was removed in this model for the equiv-

alent reason. For both the EQ and the RR the model explains significantly more

variance than the models using the exam scores as the response variable. The cor-

relation of the EQ with the overall course performance is high (p < 0.0001). The

model explains 41% of the total variance (R2 = 0.41) performing significantly better

than in any of the previous studies. The model using the RR explains 35% of the

variance (R2 = 0.35). Only for the RED another reduction in explained variance

(from R2 = 0.14 to R2 = 0.12) is recorded.

Based on these results, a general suitability of the EQ and the RR as a student

performance metric can be assumed.

7.2.3 Determination of a Minimum Number of Submissions

Because Jadud reported that a minimum of seven submissions per session were

needed and this was blindly adopted by [5], the influence of the package length

needed to be analyzed as part of our work. A parameter min_package_length

was used to exclude submission packages, that had fewer submissions than this

limit. Recall that for us, a submission consists of code snapshot data and websocket

log data. Simple linear regression models were built on the resulting data set and

the explained variance was captured for each metric. Considering that 80% of all
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submission packages had less than 21 submissions, the upper limit was set to 21.

Fig. 7.7 shows the results of this analysis:
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Figure 7.7: Influence of the minimum package length on the model performance.

Increasing the package-length parameter causes the analysis to exclude more and

more data. This leads to a reduction of variance explained for the EQ and the RR.

Only for the RED an increase of explained variance, compared to the data with a

minimum package length of one, is recorded around a minimum of 15 submissions

per package. The performance improvement for the RED when only including

packages that have at least 15 submissions is reviewed in the discussion.

The rapid decrease ofR2 that is visible in Fig. 7.7a for package lengths of greater

then 15 is evoked by the huge loss of data that occurs when omitting this many

submissions.

7.2.4 Analyzing the Stability

Before discussing the metrics in context another important analysis has to be done,

namely inspecting the number of packages for a single student. Since in other stud-

ies sessions were mostly generated during lab hours, the number of sessions in
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these studies is typically restricted by the number of assigned laboratory exercises.

Using our submission package approach, the maximum number of packages per

student is limited by the total number of assignments. For our data set the maxi-

mum number of packages per student was therefore 40. Fig. 7.8 shows the high

variability of all three metrics, when only a few packages are available.
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Figure 7.8: Influence of available packages on the metrics’ accuracy.

At around 20 packages the metrics appear to stabilize. Because the EQ and the RR

are highly correlated, the respective figures are very similar. For the RED there is a

higher variance between the students for when the process stabilizes, which can po-

tentially be explained by the non-normal distribution. At around 35 packages, the

RED values seem to follow an upward trend. This could be explained by Becker’s

assumption in [26], that the RED will inevitably rise with more submissions.

Knowing when a metric finds its steady-state is important, because this could

be a determining factor for the performance of early predictive models. By the end

of week three, only 29% of the students had 21 or more packages and by the end

of week four, 77% had crossed this threshold. For course design, it is important to

note that the earlier and the more frequent students start programming, the faster

these metrics stabilize and become more accurate.
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7.2.5 Discussion

The above results show that each of the proposed metrics is correlating with the

student’s overall course performance with different levels of overall variance that

can be explained by the models. The next step is to see whether these metrics are

dependent on the context of the programming assignment and how the metrics

perform compared to each other. The first part can be addressed by looking at the

individual performance for each context which is displayed in Table 7.3, where āstud

is the average number of assignments per student and ālen the average number of

available submissions per assignment.

Table 7.3: Student performance metrics in context.

Context na nsub nerr āstud ālen R2
EQ R2

RR R2
RED R2

errsub

All 45 57110 20737 34.69 18.92 0.41 0.35 0.12 0.32
Homework 15 28738 8723 12.45 26.54 0.29 0.24 0.07 0.2
Quizzes 17 12311 5308 15.46 9.15 0.26 0.2 0.07 0.11
Quizzes (AG) 13 11206 4774 12.54 10.27 0.22 0.16 0.06 0.1
Gateway 3 10346 3904 2.86 41.55 0.2 0.18 0.14 0.09
In Class 5 5715 2802 3.97 16.76 0.04 0.05 0.0 0.06
Quizzes (TO) 4 1105 533 2.95 4.35 0.06 0.06 0.02 0.03

Besides the error compilation metrics, the error ratio - defined as errors per submis-

sion - was also evaluated and compared to the more complex metrics.

A first observation is that the more submissions and errors are available the

better the EQ, RR and the error ratio perform. This might lead one to conclude that

only the number of submissions and errors made are relevant for the performance

of the metric. Interestingly, the analogous trend does not seem to hold true for the

RED. While the RED has a weak performance using only the data from the gateway

assignments, the performance worsens when only the data from the auto-grader

quizzes is available, although both data sets have a similar number of submissions

and errors. The main difference is that students coded four times as much per

gateway assignment compared to a single quiz. This suggests that the RED relies
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not only on the number of submissions, but also on the length of student packages.

Predictive Performance Over Time

The above results indicate a general suitability of the EQ, RR, and RED as predictors

of student performance. The above models were built with all the available data

to the date of the exams, to the end of the course respectively. In order to be

used as a predictor that can flag struggling students at an early stage, predictive

performance of these metrics needs to be evaluated at different points of the course.

Fig. 7.9 displays the predictive power at the end of each week for a student’s overall

course performance comparing all metrics to each other.
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Figure 7.9: The student performance metrics over time.

The dashed line indicates the predictive performance of a model built with the error

ratio. Interestingly, over time the RR does only just as well as simply taking the error

ratio, despite having a reasonably better performance in week two. [24] reported a

weaker performance of the EQ in comparison to the RR. Within our course setting,

the RR has a weaker performance in every consecutive week, despite its great

performance in week two. The RED is performing worse than the error ratio in

every week, although the reduced model - where the package length is equal to

or greater than 15 submissions (RED_15 in Fig. 7.9) - shows a slight improvement.

The figure also displays that the predictive power of the metrics increases over time
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which is directly related to the amount of available data at the end of each week.

When looking back at Fig. 7.1, the spike from Week 2 to Week 3 is explained by an

almost equal spike in submissions.

Since the main objective is to predict a student’s performance as early as possi-

ble, preferably before the first midterm exam, it makes sense to pick the EQ over

the other metrics in order to build a model that can be used for prediction. Because

there is not enough data available in Week 1 and the first midterm already takes

place after the end of Week 3 in the current course setting, the only possibility to

do the prediction is currently within Week 3.

It is important to emphasize that for all of the metrics the amount of available

data is of critical importance. All these metrics are built upon the student error

compilation behavior and, except for the RED, they seem to not be influenced by

the context of the assignments. The RED performed best on the data from the

gateway assignments. This data was generated by students solving mandatory

assignments in a separate lab session. Either this context, or the fact that average

package length is about 41 submissions, is the reason for the performance increase.

Based on the design of the algorithm of the RED, the latter seems more reasonable

and this hypothesis is supported by the RED’s slight improvement of performance,

when the minimum package length is increased to 15. This should be considered for

future course design because front-loading of coding assignments can drastically

improve the metrics’ accuracy.

Altogether, it must be noted that these metrics were developed by their respec-

tive authors and mostly tested in different course settings, containing fewer as-

signments, but longer sessions. The above results show that the error compilation

metrics are - despite their variability - language agnostic. This knowledge should

be utilized to further improve these metrics or to come up with alternatives that

quantify the error compilation behavior.
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7.3 Analyzing Time Dependent Data

Since learning to program requires much practice, our hypothesis is that students

who invest a large amount of time into coding will perform better in the course.

Hence, we want to utilize these time dependent variables to flag students who

might not be spending enough time learning and are possible candidates of being

at-risk of failing the course.

7.3.1 Time Spent Actively Coding

In order to quantify the amount of time a student spent coding, there are several

approaches. If the student snapshot data and the corresponding timestamps are

available, the simplest procedure is to take the time difference between two suc-

cessive timestamps as the time a student spent coding. While this was done in

other studies and was perfectly fine in their respective environments, using that

approach within our course setting would yield non-representative measures of

student coding activity. The reason is that students are not only coding in class, but

also as part of the required quizzes and during assignments on their own schedules.

In contrast to a lab setting, it is not uncommon for students to interrupt their work,

take a break and finish the assignment at a later time. Students probably also spend

time on social media because there is no immediate time limit to solve the assign-

ments. Fig. 7.10 shows the student activity during a day and during a week over the

duration of the whole course. As the figure shows, students code throughout the

entire day, with coding activity peaking around noon and late at night. Visualizing

the data from other studies in a similar way would only show activities during the

lab hours. The fact that students can code whenever they want to requires a new

approach to calculating the students’ real active time. By using the data from the

websocket log, the time between two submission timestamps can be analyzed and
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Figure 7.10: Students coding activity.

decomposed. Between two code submissions, the student is usually modifying the

code. These actions are captured in the websocket log as explained in Section 6.3.2.

Two consecutive actions are called a transition and their time difference is called

a transition time. Each transition time is then categorized as: active time ta (the

student was actively working on the assignment); browsing time tb (the student

tabbed out of the assignment but came back within a specified time limit); idle time

ti (the student was still connected to the server but the next action was outside of

the allowed time); and offline time to (the time between two timestamps where the

student was not connected to the coding environment). The average proportions

of these four different components for all students are displayed in Fig. 7.11.

timestamp j timestamp j+1 active (ta)
browsing (tb)
idle (ti)
offline (to)

Figure 7.11: Student activity between two code submissions.
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The time limit that distinguishes between active time and idle time was determined

by maximizing the explanatory power of the portion of active time that showed

significant correlation to overall course performance. The explanatory power incre-

mentally increased up until a limit of 400 seconds. A limit greater than that neither

increased nor decreased the explanatory power. This implies that a student who

is inactive on the coding platform for less than 400 seconds, may still take outside

actions that are related to the success in solving the programming assignment -

such looking up syntax or researching methods to solve an error.

Plotting the overall active time against course performance as seen in Fig. 7.12

still does not reveal any kind of a trend.
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Figure 7.12: Scatterplot of active time against course performance.

There are two students with a low active time and a weak performance, but those

are outliers, which will become clear in future plots.

Because all assignments are included in this analysis, there may be noise in the

data: The time a student spends on an assignment is related to the type of assign-

ment. This leads to the next step of breaking the active time down by assignment

type.
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7.3.2 Decomposition of Time Spent Coding

The necessity of breaking down the time spent coding also rises from the fact that

the data is collected in an on-campus course setting instead of a laboratory envi-

ronment. When ta was generated for subsets of the data that corresponded to the

different assignment types, the data was still as scattered as before for homework,

gateway and in-class assignments, except for quiz assignments.

Both the quizzes with automated feedback and the try-out quizzes, as well

as the quizzes in total indicated a negative relationship between ta and course

performance. Out of these, the average time t̄a a student spent on an auto-graded

quiz assignment showed the highest correlation to the course performance. The

resulting linear model after removing two outliers is shown in Fig. 7.13.
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Figure 7.13: Scatterplot of time spent on quizzes and course performance.

Other factors that could be causing noise

All quizzes, as well as most of the homework assignments had the coding environ-

ment embedded and the students were encouraged to use the coding environment.

But a survey - that was answered by 69 students after the end of the course - re-

vealed that over 60% of the students coded either in the terminal environment or

somewhere else rather than in the coding environment. This conflicts with the goal

of mapping students’ coding efforts to their overall performance, as much of the
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effort is not captured at all. Since the full integration of the coding environment

was still at an experimental stage, students had to submit a file containing their

source code for each homework assignment. This led to many students not coding

their homework assignments in the embedded coding environment, in part due

to convenience reasons that were revealed in the survey. This is in contrast to the

quiz assignments, where students needed to at least submit their solution in the

coding environment to obtain a keyword, which then credited them points. An-

other reason that distinguishes quiz assignments with automated feedback from

the homework assignments is, that once students obtain the keyword from the quiz

auto-grader they will stop working on the quiz, since they know that it is solved

and they automatically get points credited. On homework assignments however,

students would often review and try to improve their homework up until shortly

before the deadline, making it difficult to distinguish these students from low per-

forming students based on amount of time spent coding. (Low performing students

who spent greater amounts of time trying to solve the homework.)

Since excluding students with little active time from the data set would lead

to exclusion of students of interest, instead, 30 students that used the coding en-

vironment the least (as measured by working on the least number of assignments

captured by the coding environment) were removed from the data set. This does

not mean that these students did not do the assignments, they simply did not do

so in the coding environment sufficiently often. The 30 excluded students spent

on average 42% less time on the coding platform, had 47% fewer source code sub-

missions, worked on 23% fewer assignments in total and 37% fewer homework

assignments. The resulting model after excluding the 30 students explains 34% of

the variance and is displayed in Fig. 7.14.
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Figure 7.14: Scatterplot of time spent on quizzes and course performance after
filtering.

It is remarkable that the overall course performance of a student can be explained -

to some extent - by the average amount of time it takes them to solve these small

programming problems, even though these only count for 5% of the student’s

final grade. This can partly be explained by the programming problems posed in

quizzes themselves: They cover the basics of programming and essential coding

principles. Based on these results, it can be concluded that students who struggle

to understand these basic concepts are less likely to have a good final grade.

7.4 Mastering the Essentials

The auto-grader quizzes also revealed that students who did not solve the quizzes

are less likely to be high-performing students.

The auto-grader quizzes can only be solved by entering a keyword that is re-

turned to the student by the auto-grader when the programming assignment is

solved correctly. At the same time this is captured by the server as a success event.

Based on this information, the number of solved assignments can be extracted for

every student and afterwards a student’s solved ratio r can be calculated by dividing

the sum of the solved assignments by the maximum of assignments solved by a
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single student. For example, the student who solved the most assignments, solved

10 assignments. The student’s solved ratio is therefore 10/10 = 1.0. Another stu-

dent solved 8 assignments, resulting in a solved ratio of 8/10 = 0.8. This allows

to rank a student relative to their peers. Fig. 7.15 shows the solved ratio and the

corresponding students grade.
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Figure 7.15: Correlation of the solved ratio r and the overall course performance.

There is a very strong correlation between the number of quiz assignments solved

and the overall course performance. Using all available data, the model can explain

almost up to 50% of the total variance, although the quizzes account only for five

percent of the overall grade. As for the metrics that quantify the error compilation

behavior, the predictive performance overtime using the solve ratio is compared to

the EQ in Fig. 7.16.
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Figure 7.16: Predictive performance of r over time.
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A simple linear regression model built on the solved ratio is visibly stronger than a

model built on the EQ, with a relatively good performance already in Week 2.

This is again an indication that the quiz assignments play an important role in

this course. Failing to master the basics at an early stage can have a negative impact

during the rest of the term. Students who failed to solve the quizzes did so either

out of laziness and a failure to recognize the importance of class preparation, or

due to having serious difficulties trying to solve the quizzes and instead giving up.

While the motivation might be unclear at that point, the data shows that failing

the quizzes for either reason does have a strong impact on the student’s overall

performance, suggesting that this metric can be harnessed to build a predictive

model.

7.5 Predicting At-risk Students

After evaluating the student performance metrics and other information extracted

from the coding environment, the resulting knowledge can be used to build models

capable of flagging students with a high probability of dropping the course or

failing the class before their first midterm exam. These models need to be highly

accurate at the earliest point in time possible. Because students only start to code

in week two and the first midterm is at the end of week three, the days after the

second week are of interest and need to be explored.

As stated earlier, there are two options to predict at-risk students. The first

option is the actual prediction of the exam outcome or course outcome, while the

second option is the classification of a student as either pass or fail. Both options

are explored in this section.
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7.5.1 Prediction

In the previous sections simple linear regression models were built for each metric.

The next step is to build a multiple linear regression model including the time

dependent variable and the solve ratio. Since the EQ, RR, and RED are all metrics

based on the student’s error compilation behavior, they do modestly correlate with

each other. Therefore, it makes sense to select one metric at a time to use in the

model.

Table 7.4 displays different models based on the full data set at the end of week

eight with overall course performance being the response variable.

Table 7.4: Multiple linear regression models using the full data set.

Predictors R2 R2
adj AIC

EQ, r 0.62 0.61 532.84
RR, r 0.63 0.62 531.5
RED, r 0.54 0.53 550.95
EQ, ta 0.39 0.37 575.31
RR, ta 0.33 0.32 583.09
RED, ta 0.16 0.14 603.46
EQ, r, ta 0.63 0.61 533.99
RR, r, ta 0.63 0.62 532.07
RED, r, ta 0.54 0.53 551.33

Two observations can be made:

1. When the solved ratio is combined with the error compilation metrics, the

RED is outperformed by the EQ and the RR, while the EQ and RR performed

similarly.

2. Using the full data set, t̄a should be excluded because it does not improve the

performance of the model: While R2
adj is unchanged, the AIC increases when

t̄a is included.

When using the reduced data set, a multiple linear regression model built with the

RR, r and t̄a performs best as shown in Table 7.5.
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Table 7.5: Multiple linear regression models using the reduced data set.

Predictors R2 R2
adj AIC

EQ, r 0.58 0.57 324.13
RR, r 0.61 0.6 320.4
EQ, ta 0.57 0.55 326.43
RR, ta 0.58 0.57 324.47
EQ, r, ta 0.62 0.6 320.25
RR, r, ta 0.66 0.64 315.21

Utilizing this information, two models can be built based on a reduced data set

and a full data set. For the full data set, a multivariate model is built by combining

the solve ratio r with either the EQ or the RR. For the reduced data set, the time

spent on auto-grader assignments is added to the model. The multivariate models

are compared to a univariate model of the EQ. Fig. 7.17 shows the predictive

performance of the models - with the overall course performance being the response

variable - for every week.
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(a) Full data set.
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Figure 7.17: Predictive performance of the multivariate models over time.

The univariate model is outperformed by the multivariate models in both cases,

whereas the performance for both the EQ and the RR in the combined models

does not vary significantly. However, the univariate model of the EQ shows an

improvement when applied to the reduced data set. This implies that the accuracy

of the EQ was biased by students who mainly coded on another platform and there

were not enough packages available for the EQ to stabilize and find its true value.

When using the same predictors but identifying the first midterm outcome
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as the response, all models are generally weaker than the models from Fig. 7.17.

However, the univariate model still improves when applied to the reduced data set

by more than 30%. This is displayed in Fig. 7.18, where the x-axis represents the

days left before the first midterm exam:
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Figure 7.18: Predicting the midterm outcome in week three.

Using only one week of student data, the multivariate models already explain

over 30% of the variance and are more accurate than simply using the EQ. This

again emphasizes the importance of submission data availability. The predictions

of midterm outcomes or overall course outcomes can be used to rank students.

Starting from the student who is predicted to perform most poorly, the instructor

can then screen the students one by one and decide, if and how to intervene to help

the students.

7.5.2 Classification

When building a machine learning classifier that should also be implemented and

evaluated across universities, it is important that the same features are also avail-

able in that data set. Therefore, two approaches are presented: first, using high-level

features and secondly, using fine-grained features at the assignment level similar

to [28]. Students with a midterm score lower than 70%, as well as students with an

overall course performance lower than 75%, are labeled as at-risk.
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Besides the features that have been discussed earlier in this chapter, additional

features can be extracted from the data set. These include: number of assignments,

broken down by context; number of times restarted the assignment; number of

times tabbed out of the environment; average steps to solve auto-grader assign-

ments; average steps to solve an error; number of error states; total number of

actions; total number of keystrokes; number of times spent less than 75% time on

try-out quizzes; number of times spent more than 75% time on auto-grader quizzes;

average time it toke to solve an assignment; average time spent on try-out quizzes;

average time spent on auto-grader quizzes; keystroke latency;

Additionally, fine-grained features can be extracted for each assignment - for

example an EQ of a specific assignment. For every model, RFE was used to auto-

matically select the five most relevant features.

Weekly Classification Performance

With the data available at the end of each week of the course, we trained and tested

classifiers using only high-level features. Beginning with the data available at the

end of week two, this yields seven models in total. Table 7.6 lists the classifier

metrics for each model.

Table 7.6: Prediction of course failure.

Week Acc AUC κ F1-Score at-risk Precision Specificity

2 0.8 0.85 0.45 0.87 0.5 0.67
3 0.83 0.89 0.74 0.89 0.67 1.0
4 0.89 0.94 0.9 0.93 0.86 1.0
5 0.9 0.96 1.0 0.94 1.0 1.0
6 0.89 0.95 0.79 0.93 0.83 0.83
7 0.89 0.94 0.71 0.93 0.71 0.83
8 0.9 0.95 0.71 0.94 0.71 0.83

The classifier for week two has a relatively weak performance - expressed by the

low κ score and the low class-specific precision and recall ratios. Nonetheless, the
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overall performance of the classifiers is useful and improves slightly over time.

Most importantly, the specificity is on average 88%, which means that on average

88% of the at-risk students are identified.

The most important features selected by RFE are displayed in Fig. 7.19. The

number of times a certain feature was selected is given in parenthesis in the figure

caption. The figure shows the differences between the two populations, students

at-risk of failing the course, and students who are predicted to pass. A two-sided

t-test of independence is used to test for a significant difference between the means

of the two populations. At a significance level of 5%, p-values lower than 0.05

indicate a significant difference and were calculated for each feature.
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Figure 7.19: Important features for predicting overall course performance (high-
level). (a) Number of times the student spent more time on an auto-grader assign-
ment than 75% of their peers (7). (b) EQ of the student (7). (c) Solved ratio for the
student (7). (d) Number of unique error states (3). (e) Average time the student
spent on auto-grader assignments t̄a (3).

Three out of the five features that were selected were discussed extensively in the

previous sections. The EQ (Fig. 7.19b) as well as the solved ratio r (Fig. 7.19c) were

selected as features for all seven models, meaning that the EQ and r contribute

significantly to the models’ success of correctly classifying at-risk students in every

week. Furthermore, t̄a (Fig. 7.19e) was selected in three out of seven models. It

is evident and also backed by the low p-value that at-risk students on average

solve fewer auto-grader assignments, spent more time on them and also have a

higher EQ.
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Moreover, a metric that indicates whether the amount of time a student spent

on an auto-grader assignment is greater than the third quantile (Fig. 7.19a) was

selected for every model as well. Although there is no significant difference in the

means, it is possible that there are other interaction effects between this feature and

others that make it important

Lastly, students who have fewer unique error states are more likely to be at-

risk (Fig. 7.19d). Recall that for a student who has ten code submissions for an

assignment and encountered ten consecutive errors, the number of error states for

that assignment is 1. But if the student had one successful compilation event within

the ten submissions, for example at the third submission, then there are two error

states in that assignment - one before and one after the success. Struggling students

might have fewer error states because their error states include more unsuccessful

submissions. On the other hand, high-performing students are able to fix an error

in fewer steps and have therefore more, but shorter, error states.

Classification Performance in Week Three

As the goal is to intervene as early as possible, daily classifiers were built for up to

seven days before the first midterm exam. Similar to the regression models, ∆ days

indicates the number of days left before the first midterm exam. The classifier

performances, trained on the high-level data are presented in Table 7.7.

Table 7.7: Prediction of poor performance on the first midterm exam (high-level
features).

∆ days Acc AUC κ F1-Score at-risk Precision Specificity

-7 0.76 0.82 0.39 0.84 0.45 0.71
-6 0.77 0.83 0.52 0.85 0.5 1.0
-5 0.81 0.9 0.58 0.87 0.54 1.0
-4 0.77 0.9 0.6 0.85 0.6 0.86
-3 0.82 0.9 0.56 0.88 0.62 0.71
-2 0.8 0.89 0.56 0.87 0.62 0.71
-1 0.82 0.9 0.66 0.88 0.67 0.86
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While not as reliable as the previous models, these models have an average speci-

ficity of 83% which makes them still useful. For these classifiers, the most informa-

tive high-level features are displayed in Fig. 7.20.
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Figure 7.20: Important features for predicting midterm outcome (high-level).
(a) Solved ratio of the student (7). (b) EQ of the student (7). (c) Idle time ti on auto-
grader quiz assignments (6). (d) Number of times the student spent more time on
an auto-grader quiz assignment than 75% of their peers (3). (e) Number of unique
error states (2).

Interestingly, four out of the five most frequently selected features are identical to

the most frequent features of the previous model. The feature that was not in the

top five features in the previous models is the amount of time a student was idle on

auto-grader assignments (Fig. 7.20c). A possible reason for this mean difference is

that high-performing students might solve an auto-grader assignment without the

need to pause or interrupt their coding. On the other hand, at-risk students possibly

either spend more time thinking or browsing for the answer - and passing the idle

limit of 400 seconds - or they are distracted or discouraged and do non-course

related things when they intended to work on the quiz assignment.

Repeating the same process, but with fine-grained features, results in different

models whose performance are displayed in Table 7.8.
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Table 7.8: Prediction of poor performance on the first midterm exam (fine-grained
features).

∆ days Acc AUC κ F1-Score at-risk Precision Specificity

-7 0.85 0.89 0.63 0.9 0.71 0.71
-6 0.85 0.92 0.6 0.91 0.6 0.86
-5 0.8 0.91 0.66 0.87 0.67 0.86
-4 0.84 0.93 0.74 0.9 0.75 0.86
-3 0.86 0.94 0.66 0.91 0.67 0.86
-2 0.84 0.95 0.66 0.9 0.67 0.86
-1 0.86 0.93 0.74 0.91 0.75 0.86

Comparing these models, which are trained with fine-grained features, to the for-

mer models shows an overall increase in model performance. Looking at the se-

lected features in Fig. 7.21, it is evident that the fine-grained features are dominant.
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Figure 7.21: Important features for predicting midterm outcome (fine-grained).
(a) Number of errors made in quiz assignment four (6). (b) EQ of the student (5).
(c) Binary variable - 1 if the student solved quiz assignment three, else 0 (4). (d)
Amount of time spent on quiz assignment four (4). (e) Binary variable - 1 if the
student solved quiz assignment five, else 0 (4).

Nevertheless, the EQ was selected again five out of seven times (Fig. 7.21b). In

addition, two variables from quiz assignment four - which is an auto-grader assign-

ment - were selected: At-risk students encountered more errors on average than

their peers on this assignment (Fig. 7.21a) and they also spent on average more

time working on it (Fig. 7.21d), indicating that they required more time to solve

it. Besides that, two binary variables were selected, which were also derived from

auto-grader assignments. The bar plots show the proportions of each group that
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solved quiz assignment three and five respectively. The marked p-values were com-

puted using the Fisher’s exact test [47]. The test is used to examine whether there is

a significant difference between the proportions of one variable among values from

the other variable. Both binary variables show that more than 50% of the at-risk

students did not solve quiz assignments three and five.

Quiz assignment three was due ten days before the first midterm exam and

had a participation of 93% when the first model was built. Quiz assignment four

was available one week before the midterm exam and the feature was used for

the prediction for almost every day continuously outperforming other features.

However, the participation rate at seven days before the midterm exam did not

exceed 50%.

The selection of these features might either be a coincidence or show that student

success on that assignment directly had an impact on their midterm success. When

looking at Fig. 7.22, a principal component analysis [48] of the selected features, it

becomes evident why the features have been chosen within the RFE.
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Figure 7.22: Principal Component Analysis of the most common fine-grained fea-
tures.
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While there are not two perfectly distinguishable clusters, it is evident that the

closer a student is to the lower left corner, the more likely they are to pass the

first midterm. The arrows c and e represent binary features of whether a student

solved quiz assignments three and five, respectively. The EQ is represented by

b. The higher a student’s EQ, the more that student is pushed into the direction

of arrow b. Moreover, a and d represent the number of errors and the time spent

on quiz assignment four. The two outliers at the top correspond to two students

who had no data for assignment four. It is important to note that at-risk students

are not similar to each other and do not compose a single cluster. Instead, while

they are clearly distinguishable from high-performing students, at-risk students

can struggle in many different ways.

A characteristic all three quiz assignments (three, four and five) have in common

is that they have the highest participation and, at the same time, more students than

average needed more time to solve these programming problems. Furthermore,

quiz assignment three has an average EQ of 0.48, which is more than double the

overall student mean EQ after week eight (0.19). In addition, 75% of all submissions

resulted in errors, indicating that this assignment was difficult for the vast majority.

For all three assignments, the students received pre-populated source code.

For quiz assignment three, students were instructed to write a function, which

takes two float arguments as an input and returns the sum of the two. This was the

first assignment, where students had to write a function.

Quiz assignment four was about branch statements. The students were in-

structed to read user input. They then had to determine whether the number read

is within a given range. Based on the three possible outcomes, a score had to be

assigned - by using if/else statements - and returned to the check function.

Quiz assignment five was about loops. Students were instructed to add up the

numbers from n to 2n, where n was set by user-input. This was the first time as

well where students had to write a loop.
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Discussion

These models can be utilized and integrated into a future classroom setting. Al-

though the models that were trained on fine-grained features performed better,

an issue arises when implementing these: In order to be of value, the exact same

course setting would need to be retained. Instead, high-level features allow for a

more general implementation with an acceptable performance. The classifiers had

on average a high specificity, which is important in order to not miss at-risk stu-

dents. Even though high precision is beneficial and would save time in inspecting

falsely flagged students, it is not as crucial for the implementation. Furthermore,

the instructor does not need a binary classification. Instead, the logistic regression

model can return the probability of a student belonging to either class. This allows

the instructor, similar to the regression models, to rank students and follow the

same procedure in inspecting students.

Since both approaches, predicting the midterm outcome and the overall course

outcome, are useful, the former can be used to continuously rank and monitor

students based on their probability score of passing the course. Although the course

has a tight schedule and it is of utmost importance to identify and help students

before the first midterm exam, it does not mean that students will not struggle

afterwards.

Another benefit of performing feature-selection on assignment-level data is that

important assignments are highlighted. This allows evaluation of these assign-

ments from a pedagogical point of view and gathering insights as to why certain

assignments contribute to student learning more than others. Applying these meth-

ods to a variety of courses at different universities has the potential of collabora-

tively engineering new assignments that have a greater impact on student learning.
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Chapter 8

Discussion

Following the analysis, this chapter discusses limitations that need to be considered

when results of the analysis are compared to other work. In addition, the key

findings are summarized and the work is concluded with implications for future

work.

8.1 Limitations

Several circumstances limit the results and methods applied in this thesis. For one,

the error compilation metrics were developed and tested with data gathered from

Java programming courses as described in Chapter 5. Findings of our analysis

might not be directly transferable to other studies, although the results strongly

indicate a suitability of these metrics across programming languages.

Furthermore, the main findings on time dependent variables are limited by a

smaller data set, caused by students, who did not use our coding environment as

extensively as would have been necessary to collect enough data. Partly, this was

caused by the absence of critical features from our coding environment for many

students, such as the ability to interact with the compiled program.

In addition, as for all studies that use assignment data within their analysis, it is
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difficult to compare this data to data from other universities, when the assignments

are not similar at all. This issue can partly be addressed by cross-validating our

results with a data set from the same course in the next academic year.

Cross-validation with another data set is necessary for the prediction models

as well, because the models have only been trained and tested on a small data set.

Ideally these models should also be cross-study validated.

8.2 Conclusion

This work shows a successful integration of an online coding environment within

an online learning management system of an on-campus course. It is demonstrated

how the data from such a course setting can be utilized to gather insights on student

learning and to improve the students’ learning experience.

The most common compiler errors that students received have been identified

correctly by using a data set from a past course with only a fraction of available

data compared to the main data set.

Furthermore, three error compilation metrics that were initially developed in

a Java course setting were evaluated in our course setting and showed a strong

correlation with student exam performances and their overall course performance.

It was also found that these metrics are not dependent on a context, but rather

their accuracy relies on the amount of available data. While the predictive perfor-

mance of the EQ and the RR was good enough to build predictive models, the RED

definitely needs more tweaking in order to be as useful as the alternatives.

The implementation of an auto-grader system was furthermore very successful.

Not only was the direct feedback helpful for the students, but the two metrics

derived from the system were proven to be two very useful predictors of student

performance. These metrics included the number of auto-grader quiz assignments
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a student solved compared to their peers, as well as the amount of time a student

needs on average to solve auto-grader quiz assignments. A multivariate linear

regression model, built with these two metrics and with either the EQ or the RR,

showed superior performance compared to univariate models built with either the

EQ or the RR, two weeks into the course and with only one week of coding data.

For the time-dependent variables, it was perceptible that it is important to separate

the data based on the context.

Machine learning was used to build predictive models that could identify at-

risk students within a week before the first midterm exam, leaving enough time for

an intervention to support these students. It was shown that these models can be

useful to assist the course instructor in identifying at-risk students by ordering the

students based on their class passing probabilities. A positive side effect of using

machine learning models is to gain insights on important assignments and also the

possibility to detect new indicators for student performance.

Overall, these findings lead to the conclusion that a data-driven approach in

introductory programming classes can not only improve the learning experience for

students, but also the teaching experience for educators. This benefit is maximized,

if the characteristics of a data-driven approach are considered while designing the

course, which among others includes the front-loading of coding assignments to

have enough data available for building accurate models as early as possible. While

the auto-grader and the enhanced error messages already helped this course, the

findings of student interactions with specific assignments as well as the prediction

models will be useful for future courses.
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8.3 Future Work

This was the first full integration of a coding environment into an introductory pro-

gramming course. Among the obvious benefits to novice programming students

is their ability to start coding instantly in the environment, without having to over-

come the typical hurdles presented by coding environments. In addition it allowed

the instructor to oversee the activity and to offer fast and direct remote assistance

to support-seeking students.

Nevertheless, there is still much to improve within the coding environment.

Addressing frequent problems that students had when interacting with the plat-

form and also improving and enhancing the server-sided logging are two major

areas of future work. The focus should be on adding features that are necessary for

allowing students to work on more complex programming problems. In addition,

features that are directed toward the instructor and the TAs can also be improved

to ease grading and supporting-giving processes. One option is to implement a

code submission option within the environment that allows students to submit

their solution through the coding environment, linked to Canvas by utilizing its

API. Improvements of this type on the coding environment could probably en-

tice the more advanced students to use the coding environment by choice. These

students, who currently often prefer to code in different environments, are a criti-

cal part of this type of analysis. In our analysis, data from such inactive students

had to be excluded. Another important feature is the actual implementation of

the predictive models into an admin dashboard for the instructor, that would auto-

matically run the models and visualize the results, most importantly highlighting

flagged students. Once such a system is implemented, intervention strategies can

be developed and monitored on how to best help students.

Because our analysis revealed the importance of short programming assign-

ments with automated feedback that cover basic programming principles, a focus
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should be on including more of these and a further development of the auto-grader

system. The auto-grader can be improved by adding more test cases to check func-

tions and evaluate correctness. Another area is the improvement of the auto-grader

workflow into a more manageable structure for the instructor.

A different approach would be the integration of an auto-grader system that

utilizes abstract syntax trees for correctness checking [18]. This seems to be the

most promising approach for auto-grader systems, but it is also more challenging,

especially for the C programming language. Incorporating abstract syntax trees has

the additional benefit of opening the possibility of implementing the automated

hint-generation system that was discussed briefly in Chapter 6.

A post-course survey revealed that students generally found friendly error mes-

sages helpful. By taking advantage of teaching two classes simultaneously in the

future, this impression can be validated by only activating the enhanced error sys-

tem in an intervention group and comparing, for example, student performance

metrics to a control group. Besides validating the effectiveness of friendly error

messages, a system can be implemented in the future that enables students to rate

the helpfulness of the friendly error messages the moment they occur, automati-

cally identifying friendly error messages that are not useful. An improvement that

would demand more work, but would be even more beneficial for students, is to

develop and implement a system similar to the HelpMeOut system [11] that collects

student fixes and provides these as suggestions to a student with the same error.

Since error messages in C have multiple causes, a data-driven approach could

identify common causes for an error, based on the programming assignment and

provide tailored explanations specific to that assignment. Further personalizing

friendly error messages by incorporating source code specific information, such as

the variable names, is another opportunity to improve the effectiveness of friendly

error messages.
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Future work should also focus on addressing limitations that were previously

discussed. This includes further validation of the prediction models. Moreover, the

view of our analysis was limited to the work presented in this thesis, meaning that

there is still more data to be explored. As the feature selection process revealed,

there is even more information hidden in the details. This requires a separate

analysis and discussion of features that are already available in the data set or were

not even explored yet.

Ultimately, these findings have the potential to reveal more information on how

students learn to program and how this information can be utilized to improve the

teaching of programming.
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